DATE: August 14, 2000

TO: Code Enforcement Officials, Members of Plumbing Code Adoption Boards, and Interested Members of the Plumbing Community

FROM: Edward Saltzberg,* PE, CEM, CIPE
 J. Richard Wagner,* PE, CIPE

The following is a general review of the 2000 versions of both the International Plumbing Code and the Uniform Plumbing Code. The review was prepared by Edward Saltzberg, PE, CEM, CIPE, and J. Richard Wagner, PE, CIPE. The review was undertaken with the health and safety of the consumer as the prime concern. However, other factors considered in our review were the life cycle cost of systems, the ease of enforcement, clarity of the code, plumbing engineering criteria, and any other reservations that the writers may have had concerning the respective provisions of the two codes. This review is not intended as a paragraph by paragraph comparison of the two code documents, but merely a comparison of the significant variations between the two documents and was modified from our 1997 code review. Therefore, we have used a vertical line (|) in the margin to indicate a change from the 1997 review and an arrow (→) in the margin to indicate a deletion from the 1997 review.

A. CHAPTER 1 - ADMINISTRATION

1-1. **IPC PREFACE.** The section Maintenance contains a significant disclaimer which reads, "While the development procedure of the International Plumbing Code assures the highest degree of care, BOCA, ICBO, SBCCI, their members and those participating in the development of this code do not accept any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text. BOCA, ICBO and SBCCI do not have power or authority to police or enforce compliance with the contents of this code. Only the governmental body that enacts the code into law has such authority."

The UPC does not contain such a disclaimer.

1-2 **IPC Marginal Markings.** The code indicates that solid vertical lines in the margins within the body of the code indicate a change from the requirements of the 1997 edition (except where a change was minor) [emphasis added]. Deletion indicators (→)
are provided in the margin where a paragraph or item has been deleted (if the deletion resulted in a change of requirements) [emphasis added].

In the UPC a vertical line denotes any change and an arrow denotes any deletion.

1-3. **IPC Section 101.2** has been revised. Fuel gas piping is no longer regulated by the IPC.

Fuel gas piping is within the scope of the UPC.

1-4. **IPC Section 102.8, Referenced codes and standards.** The code indicates that those codes listed in Chapter 13 are considered part of the requirement of this code and, therefore, an enforcement agent must have copies of all of those codes and become thoroughly familiar with them.

The UPC attempts to have as much as possible within the body of the code and not refer to or incorporate other codes as part of the UPC. The 2000 UPC contains 380 pages, compared to 131 pages in the 2000 IPC.

1-5. **IPC Section 103.4, Restriction of employees.** This section has restrictions on work that employees of a plumbing inspection department may perform and this section may be in conflict with the administration sections of the local code and, therefore, it is normally not included as part of a plumbing code.

The UPC does not include such a restriction.

1-6. **IPC Section 103.5, Liability.** This section removes any liability from employees. However, from a legalistic standpoint, this section may not be valid and may be in conflict with city attorneys' rules and regulations or state interpretations.

The UPC does not include such a provision.

1-7. **IPC Section 104.2, Rule-making authority.** This section gives the code official the authority to adopt and promulgate rules and regulations regarding the Code.

The UPC does not address rule making by the Administrative Authority. Such authority is normally included in the ordinance that created the Administrative Authority and/or in the adopting ordinance for the plumbing code.

1-8. **IPC Section 105.1, Modifications, and 105.2, Alternative materials, methods and equipment.** This section is essentially the same as what is included under UPC Section 301.2, Alternate Materials and Methods.
1-9. **IPC Section 109, MEANS OF APPEAL.** This section provides means of appealing the decision of the code official. It includes the appeal board, board membership, qualification of members, board officers, meetings, and open hearings.

The UPC does not address the filing of appeals and the administration of an appeal board. Such authority is normally included in the ordinance that created the Administrative Authority and/or in the adopting ordinance for the plumbing code.

1-10. On other matters of administration, the IPC and UPC have similar requirements and address those issues that need to be in the Administrative chapter of a plumbing code.

B. CHAPTER 2 - DEFINITIONS

2-1. **IPC Section 202, GENERAL DEFINITIONS – ACCEPTED ENGINEERING PRACTICE.** The IPC includes a definition for this phrase and the UPC does not.

2-2. **IPC Section 202, GENERAL DEFINITIONS - ALTERNATIVE ENGINEERED DESIGN.** The last sentence of the IPC definition indicates "The system design is not specifically regulated by Chapters 3 through 12". Therefore, as part of any new design, an engineer would have to include all of the appropriate sections of the codes that were to still be enforced as part of his/her submission to give the code official something with which to inspect and approve the alternative engineered design, as the entire body of the IPC has been deleted by this definition.

The UPC includes alternative engineering methods under Section 301.2, Alternate Material and Methods which still requires compliance with the remaining provisions of the UPC.

2-3. **IPC Section 202, GENERAL DEFINITIONS - FLOOD ZONES.** The IPC defines two different flood zones, flood hazard zone, A Zone, and high hazard zone, V Zone. While the definition seems clear, there are many areas, such as mountain areas, where locations are not normally subject to flooding but could be during heavy rainstorms where runoffs could have high velocity water. Therefore, from an engineering standpoint it would be somewhat hard to define which zone a specific building is located in.

The UPC does not contain this confusing item.

2-4. **IPC Section 202, GENERAL DEFINITIONS – TYPE A AND TYPE B DWELLING UNITS.** The IPC indicates a change in Type A dwelling and yet there is no change from the wording of the 1997 IPC. However, Type B dwelling unit was changed from the 1997 IPC and it is not noted as a change.
The UPC does not include these definitions.

C. CHAPTER 3 - GENERAL REGULATIONS

3-1. **IPC Section 303.2, Installation of materials.** The material manufacturer's installation instructions are superseded by the installation provisions of the standard for that particular material. This could prevent a manufacturer from dictating the installation requirements for a specific material or product for which it is responsible.

 UPC Section 310.4 requires that material be installed according to the code and the manufacturers recommendations. If there are conflicts, the more stringent is used.

3-2. **IPC Section 303.4, Third-party testing and certification.** The IPC has changed from requiring plumbing products and materials to be labeled by an approved agency to having them either tested or certified by a third party as indicated in Table 303.4. The IPC defines "third-party certification agency", "third-party certified", and "third-party tested", but it does not define the relationship between the third party and the first and second parties.

 UPC Section 301.1.1 requires that all pipe, pipe fittings, traps, fixtures, material, and devices used in a plumbing system must be listed or labeled by a listing agency. The UPC defines "labeled", "listed", and "listing agency". The requirements of the IPC and UPC produce essentially the same end results with regard to the compliance of products and materials to accepted standards.

3-3. The IPC does not have any method to determine the minimum size of the hanger rods supporting pipe.

 Table 3-1 of the UPC indicates the size of the pipe and the minimum rod size for hanging various size piping.

3-4. **IPC Table 308.5, HANGER SPACING.** An exception to Table 308.5 in Section 308.5 that is new in the 2000 IPC is that the interval of support to provide for expansion and contraction of any piping material must be handled as an alternative engineered design in accordance with IPC Section 105.4. This requires the input of a registered design professional for each project requiring provisions for the expansion and contraction of any piping. The reason for this unusual requirement is not obvious. Also, providing for expansion and contraction involves more than support spacing.
In the IPC, the maximum support spacing for ABS and PVC drainage pipe is four feet horizontally and ten feet vertically, with mid-story guides for pipe 2\" and smaller.

UPC Table 3-2 requires mid-story guides for all sizes of ABS and PVC drainage pipe. In addition, it requires provisions for expansion at 30-foot intervals per the IAPMO Installation Standards for ABS and PVC drainage pipe. The provisions for expansion and contraction of such piping are addressed by the UPC and do not need to be handled as an alternative engineered design.

3-5. **IPC Table 308.5, HANGER SPACING.** This section lists support spacing for aluminum tubing, but aluminum tubing is not an approved material for any IPC piping systems.

The UPC does not list this material.

3-6. **IPC Table 308.5, HANGER SPACING.** Lists maximum vertical support spacing but does not refer to the base of risers or support at floor levels. (Section 308.9 addresses base of stacks only.)

UPC Table 3-2 is generally more detailed. It specifically calls for vertical support at the base of risers and at floor levels.

3-7. **IPC Table 308.5, HANGER SPACING.** Footnote "a" requires that hangers shall be increased to 10-foot spacing where 10-foot lengths of cast iron pipe are used. (Emphasis added.) Furthermore, industry standards call for the supports to be within 18 inches of the joints in cast iron soil pipe. The IPC does not require this.

UPC Table 3-2 says "may be increased." (Emphasis added.) There is no reason to prohibit support spacings of less than 10 feet in 10-foot lengths of pipe. Also, the UPC requires that the supports be within 18 inches of the joints.

3-8. **IPC Section 308.6, Sway bracing.** This section requires rigid-support sway bracing for all [emphasis added] pipe 4\" and larger at turns greater than 45 degrees. This requirement seems excessive to the writers.

UPC Table 3-2 requires sway braces only for cast iron soil pipe (all sizes) and only at 40-foot intervals.

3-9. **IPC Section 308.7, Anchorage.** Calls for restraining anchors on all drain pipe 4\" and larger at changes in direction and where the pipe size changes by two (2) pipe sizes. This appears to be based on no-hub cast iron soil pipe, but the IPC does not say so.
UPC Table 3-2 requires bracing on cast iron pipe at 40-foot intervals to prevent horizontal movement.

3-10. **IPC Section 309, FLOOD PROOFING.** The subjective classification of flood hazard zones is addressed, however, the means by which flood proofing is to be achieved are not described.

The 2000 IPC defines flood hazard zone (A Zone) and high hazard zone (V Zone), but has the same requirements for flood proofing for both zones. However, it contains no indication of how to satisfy these requirements.

The UPC does not address how to flood proof a plumbing installation.

3-11. **IPC Section 312, TESTS AND INSPECTIONS.** Includes tests for drain and vent piping, water supply pipe, sewers, and backflow preventers. These requirements are not included in the individual chapters.

The UPC includes individual test requirements of drain and vent, water supply, sewers, and backflow preventer assemblies, etc., in the specific individual chapters.

3-12. **IPC Section 312.9, Inspection and testing of backflow prevention assemblies.** This section is revised in the 2000 IPC, but it still has some confusing requirements. All backflow prevention devices, even air gaps and non-testable devices, must now be inspected annually for proper operation. There are no requirements on how to inspect these devices. However, like the UPC, testable devices must now be tested at the time of installation, after repairs or relocation, and at least annually.

The UPC, national backflow prevention organizations, and device manufacturers do not require annual inspections of non-testable devices and air gaps.

3-13. The IPC does not specifically address plumbing in food handling establishments except for indirect waste, Section 802.1.1.

The UPC addresses special plumbing requirements for food handling establishments in Sections 318.0 and 412.3.

3-14. **IPC Section 313.1** references the *International Energy Conservation Code*, but that code is not listed in Chapter 13 – Referenced Standards.

The UPC does not address equipment efficiencies. The requirements of the energy conservation code that is adopted by the jurisdiction would apply.
3-15. **Section 314.2.2, Drain pipe materials and sizes.** The IPC requires air conditioning condensate drain piping, but does not provide any information as to required sizing.

The UPC in Table 8-2 provides minimum required condensate drain pipe size.

3-16. **Section 314.2.3, Auxiliary and Secondary Drain Systems.** The IPC provides requirements in the plumbing code for the secondary drain pan, which is usually provided by the HVAC contractor. Therefore, the plumbing inspector is required to approve equipment furnished under another scope of work.

The UPC does not include this provision.

D. CHAPTER 4 - FIXTURES, FAUCETS, AND FIXTURE FITTINGS

4-1. **IPC Table 403.1, MINIMUM NUMBER OF PLUMBING FACILITIES.** This table generally requires fewer plumbing fixtures than UPC Table 4-1.

The current trend in the plumbing industry is to increase the minimum number of required fixtures due to complaints of inadequate "potty parity".

4-2. **IPC Section 404, ACCESSIBLE PLUMBING FACILITIES.** This section has requirements for Type A and Type B dwelling units in residential occupancies but still does not define what these types are. IPC Section 404.1 requires that accessible plumbing fixtures comply with IPC Section 404 and ICC/ANSI A117.1. Section 404 has been revised to reference ICC/ANSI A117.1 for ordinary accessible plumbing facilities and includes additional requirements for unisex facilities, which ICC/ANSI A117.1 does not address.

UPC Section 408.7 defers to the applicable building regulations for accessibility requirements for plumbing fixtures and facilities. Table 14-1, *Mandatory Referenced Standards*, lists A117.1 except that it lists the CABO A117.1-92 edition. The UPC does not address unisex facilities, for which there are no nationally recognized requirements.

4-3. **IPC Section 406, AUTOMATIC CLOTHES WASHERS.** The IPC requires the installation of either an integral air gap or an external backflow preventer for a domestic clothes washer. The IPC fails to recognize that the industry standard for domestic clothes washers requires that they have an internal air gap. The mention of a possible external backflow preventer creates confusion in the field and frequently results in the installation of unnecessary devices by uninformed persons.
The UPC recognizes that domestic clothes washers have internal backflow protection. UPC Section 603.4.7 specifically excludes clothes washer hose connections from required backflow protection.

4-4. **IPC Section 409, DISHWASHING MACHINES.** The IPC requires either an air gap or a backflow preventer for domestic and commercial dishwashers. The IPC fails to recognize that the industry standards for dishwashing machines require that they have an internal air gap. The mention of a possible external backflow preventer creates confusion in the field and frequently results in the installation of unnecessary devices by uninformed persons.

The UPC recognizes that dishwashing machines have built-in backflow protection and does not mention the possible need for external devices.

4-5. **IPC Section 412.4, Public Laundries and Central Washing Facilities.** The 2000 IPC still does not require floor drains in public toilet rooms.

UPC Section 412.2.1 requires floor drains in public toilet rooms having two (2) or more water closets or a combination of one (1) water closet and one (1) urinal to accommodate housekeeping and the possible overflow of fixtures.

4-6. **IPC Section 419.2, Substitution for water closets.** The IPC now permits urinals to be substituted for 67% of the minimum required number of water closets instead of 50%. IPC Table 403.1 lists only required water closets.

UPC Table 4-1 lists minimum required numbers of both water closets and urinals for males. If the number of urinals is increased above the minimum, one required water closet can be deducted for each additional urinal, except that the number of water closets cannot be reduced to less than 2/3 of the minimum requirements. The UPC provides more water closets and urinals than the IPC in most occupancies and assures an adequate number of water closets.

4-7. **IPC Section 426.1, MANUAL FOOD AND BEVERAGE DISPENSING EQUIPMENT.** This new section requires that such equipment conform to ANSI/NSF 18. This now makes the Administrative Authority for plumbing responsible for this equipment, which is not considered plumbing equipment.

The UPC does not include manual food and beverage dispensing equipment in its scope, except for any required potable water connections or provisions for drainage.

E. CHAPTER 5 - WATER HEATERS
5-1. **Section 502.1, General.** The IPC references the International Fuel Gas Code for gas-fired water heaters.

The UPC includes complete requirements for gas-fired water heaters in its Chapter 5. Gas piping is included in Chapter 12 and appliance venting is in Appendix C.

5-2. **IPC Section 505.1, Unfired vessel insulation.** This section requires specific insulation on unfired vessels.

The UPC does not contain this requirement. It would be regulated by the local energy conservation code.

F. **CHAPTER 6 - WATER SUPPLY AND DISTRIBUTION**

6-1. **IPC Chapter 6, WATER SUPPLY AND DISTRIBUTION.** This section does not contain a water pipe sizing procedure. IPC Section 604.1 requires that piping be sized per "accepted engineering practice". It also requires that methods used to determine pipe sizes shall be approved, but it does not say how or by whom. Furthermore, it does not refer to Appendix E, which is supposedly an acceptable method.

UPC Section 610.0 covers sizing potable water piping. UPC Table 6-5 is used for sizing smaller systems of up to 50 water supply fixture units (WSFU) and 200 feet maximum length without a great deal of engineering. In addition, UPC Section 610.10 provides a mechanism for adapting flush valve fixtures in these moderate size systems that does not require the utilization of the engineered method to size the piping. This makes it much more convenient for the plumbing contractors, the plumbing inspectors for checking, and the engineers who do not want to do a lot of detailed engineering. Systems having more than 50 WSFU can be sized by Table 6-5 up to 1000 feet maximum, by the procedures in Appendix A, or by Appendix L.

6-2. **IPC Section 604.3, Water distribution system design criteria.** The "conditions of peak demand" under which fixtures are expected to perform according to Table 604.3 are not described. Furthermore, IPC Table 604.3 is not consistent with IPC Table 604.4 as noted below:

a. A lavatory that flows 2.5 gpm at 60 psig will not flow 2 gpm at 8 psig.

b. A shower head that flows 2.5 gpm at 60 psig will not flow 3 gpm at 8 psig nor 3.0 gpm at 20 psig.

c. A sink faucet that flows 2.2 gpm at 60 psig will not flow 2.5 gpm at 8 psig.
d. Table 604.4 lists 2.5 gpm maximum for showers but Table 604.3 lists 3 gpm required design flow.

e. Table 604.4 lists 0.5 gpm for public lavatories but Table 604.3 lists 2 gpm design for all lavatories. The flow rate of 0.5 gpm is associated with self-closing faucets.

f. In Table 604.4, the quantity of 0.25 gallons per metering cycle does not apply to all self-closing faucets, only the metering type.

The UPC provides a means for sizing water piping systems using flow values that are coordinated with current water conservation standards. (See UPC comment in Item 6-1 above.)

6-3. **IPC Table 604.3, WATER DISTRIBUTION SYSTEM DESIGN CRITERIA, REQUIRED CAPACITIES AT FIXTURE SUPPLY PIPE OUTLETS.** This table lists 8 psi flow pressure at the water supply pipe outlet for two-piece water closets. However, many ultra low flow water closets require higher water pressure for proper flushing. The IPC does not address this.

UPC Section 608.1, Inadequate Water Pressure, requires 15 psi minimum pressure at fixtures, and higher if required by the fixtures and/or fixture fittings.

6-4. The IPC does not dictate where self-closing and self-closing metering faucets are required to be installed.

UPC Section 402.6 requires that self-closing or self-closing metering faucets be installed on lavatories intended to serve the transient public, such as those in, but not limited to, service stations, train stations, airports, restaurants, and convention halls. This is consistent with current water conservation practices.

6-5. **IPC Section 604.5, Size of fixture supply.** This section allows up to a 30" reduced-size flexible tubing supply to each fixture. This can create a significant pressure drop, especially in light of the IPC's already reduced water pipe size allowance. (Also see Item 6-7 below.)

UPC Table 6-4 requires 1/2" minimum supply pipes to all fixtures. Therefore, 30" reduced-size flexible connectors will still provide sufficient water pressure and flow at the fixtures.

6-6. **IPC Table 604.5, MINIMUM SIZES OF FIXTURE WATER SUPPLY PIPES.** This section permits 3/8" fixture water supply pipes for the following fixtures:
Bidets
Drinking fountains
Lavatories
Flush tank water closets
Flushometer tank water closets

The pressure loss created by 3.0 gallons per minute for a water closet in 3/8" PEX is 32.4 psig for a 60-foot run. This is excessive pressure loss.

UPC Table 6-4 requires 1/2" minimum supply pipe to all fixtures.

6-7. IPC Table 604.5, MINIMUM SIZES OF FIXTURE WATER SUPPLY PIPES, Footnote "a". This footnote states "Where the developed length of the distribution line is 60 feet or less, and the available pressure at the meter is a minimum of 35 psi, the minimum size of an individual distribution line supplied from a manifold and installed as part of a parallel water distribution system shall be one nominal tube size smaller than the sizes indicated." (Emphasis added.)

This footnote requires that all parallel water distribution supply lines that were 3/8" be reduced to 1/4" and 1/2" supply lines be reduced to 3/8". This mandatory reduction in size will not allow the required flow of water to the fixtures as required by Table 604.3. For example, for a shower with 2.5 gpm flow in 60 feet of 3/8" PEX equals 23.5 psig loss; residual required pressure of 8 psig; elevational loss of, say, six pounds; meter loss of, say, 2.0 psi, equals a total of 39.5 psig losses without fitting losses. However, this pipe size reduction can be used with an incoming pressure of only 35 psig. Therefore, the water system cannot provide the required residual pressure and flow to the fixtures. Furthermore, if temperature controlled shower mixing valves or ultra low flow water closets are installed which require higher than 8 pounds residual pressure then the pressure deficiency is even greater.

UPC Table 6-4 requires 1/2" minimum supply pipe to all fixtures.

6-8. IPC Section 604.9, Water hammer. This section states "The flow velocity of the water distribution system shall be controlled to reduce the possibility of water hammer." Flow velocities are "controlled" by pipe sizing. However, the IPC does not limit the flow velocities for the various water distribution piping materials.

The UPC limits the flow velocities in various piping materials in its Installation Standards.

6-9. IPC Section 604.10.1, Manifold sizing. This section requires that the manifold shall be sized on the basis of the summation of the gpm demand of all the outlets
(fixtures) supplied by the manifold. This oversizes the manifold because it does not allow for normally accepted diversity in the use of fixtures, i.e., normally all fixtures do not operate at the same time.

The UPC allows manifolds to be sized on the basis of the same diversity as is used in sizing water piping.

6-10. **IPC Table 604.10.1, MANIFOLD SIZING.** This table has two columns, velocity at 4 feet and velocity at 8 feet per second. However, there is nothing in the IPC to dictate or mandate which column an individual is to utilize in sizing the water system manifold.

The UPC limits the velocity in various materials in its Installation Standards.

6-11. **IPC Table 605.5, WATER DISTRIBUTION PIPE.** This table does not prohibit the use of plastic insert fittings in polybutylene (PB) tubing. It also does not reference ASTM F1390 for metal insert fittings for PB tubing. However, IPC Section 605.19.3, Mechanical joints, mentions metallic lock rings but does not prohibit plastic insert fittings. The manufacturers of polybutylene tubing have blamed the failure of the product on the use of plastic insert fittings. They now recommend only brass insert fittings.

The UPC no longer approves PB piping for water systems due to the number of failures and lawsuits. Also, some jurisdictions prohibit flexible fixture supplies that are PB because of deterioration and failure because of the chlorine in public water systems.

6-12. **IPC Section 605.16.2, Solvent cementing.** The IPC now permits ASTM D2846 CPVC pipe and fittings up through 2” size to be solvent cemented with ASTM F493 yellow cement without the use of a primer.

UPC Section 316.1.6 requires that CPVC and PVC pipe and fittings be cleaned and joined with listed primer(s) and solvent cements(s). There is currently no consensus among the manufacturers of pipe, fittings, and solvent cements that adequate joints can be made without using a primer. There is concern among designers, installers, and code officials about mixing pipe, fittings, and solvent cements from different manufacturers who have different recommendations regarding the use of one-step solvent cements.

6-13. **IPC Section 605.22.1, Copper or copper-alloy tubing to galvanized steel pipe.** This section does not restrict the joining of copper tubing and galvanized steel pipe except for how the joining is to be made. Also the IPC does not require such dissimilar joint connections to be exposed or accessible.
UPC Section 604.1 indicates that all material used in the water supply system, except valves and similar devices, shall be of a like material, except where otherwise approved by the Administrative Authority. Furthermore, UPC Section 311.6 indicates that except for necessary valves where inter-membering or mixing of dissimilar metals occurs, the point of connection shall be confined to exposed or accessible locations.

6-14. **IPC Section 606.2, Location of shutoff valves.** Paragraph 2 requires a shutoff valve ahead of every sillcock.

The UPC does not have this mandatory requirement for all sillcocks. Shutoff valves could be installed if the installer wanted them.

6-15. **IPC Section 606.4, Valve Identification.** This section requires that all service valves, hose bibb valves, and valves not located adjacent to fixtures shall be identified. It is assumed that "hose bibb valves" are the shutoff valves required in 606.2 and not the hose bibb itself.

The UPC does not require valve identification. The function of most shutoff valves is obvious. Typical specifications for commercial construction work generally require labeling of valves.

6-16. **IPC Table 606.5.4, Sizes for Overflow Pipes for Water Supply Tanks.** This table provides the required size for overflow pipes from various sizes of storage tanks. However, normally the overflow pipe size is dictated only by the size of the water supply pipe inlet. (The amount of water entering the tank and not by the size of the tank.) Therefore, if the tank has a 1" supply pipe it might have a 2" overflow. However, this table does not relate to the size of the inlet pipe, but simply to the capacity of the storage tank. This results in extremely large overflow pipe sizes. The IPC seems to be overly conservative on this.

The UPC does not have this excessive requirement.

6-17. **IPC Table 606.5.7, Size of Drain Pipes for Water Tanks.** This table dictates the mandatory size of a drain pipe from a water storage tank. This extremely oversized drain piping might create serious damage as to where this large volume of water drainage is going to discharge. Furthermore, if someone wishes to take a little longer to drain a tank, why does the IPC restrict them? The IPC seems to be overly conservative on this.

The UPC does not contain this requirement.

6-18. **IPC Section 607.2, Hot water supply temperature maintenance.** This section requires that if a fixture is beyond 100 feet developed length from the water supply...
heater, a means for maintaining temperature shall be provided to within 100 feet of the fixture. This procedure achieves very little in energy conservation or water conservation with the allowance of 100 feet of unmaintained hot water supply. In many cases, this could require that only the first few feet of hot water pipe be insulated.

The UPC does not address hot water maintenance systems, however, the various state energy conservation laws do address this subject.

6-19. **IPC Section 607.2.1, Piping insulation.** This section is not clear as to where insulation is required on hot water piping. Is it required only on the maintained piping, or the circulated supply and return piping, and is insulation required only to within 100 feet of the farthest fixture?

The UPC does not have requirements for thermal insulation on hot water piping. The requirements of the energy conservation code for the jurisdiction would apply.

6-20. **IPC Section 607.3.1, Pressure-reducing valve.** This section is very confusing being that the requirement for a means of controlling expansion is only required for service pipes 2" and smaller, which seems strange to the writers. Secondly, there is no indication that a device to control thermal expansion is required if the incoming pressure is higher than the relief valve pressure so that subsequently the integral bypass on a pressure-reducing valve would be non-functioning and, therefore, the system would have no provision to compensate for thermal expansion.

The UPC addresses this problem very clearly in the third paragraph of Section 608.3 where it indicates that if the water supply pressure is higher than the relief valve setting, a means of addressing thermal expansion must be provided regardless of the size of the water service.

6-21. **IPC Table 608.15.1, MINIMUM REQUIRED AIR GAPS.** In the IPC table "with effective openings not greater than 3/4" in diameter close to the wall," the minimum required air gap is 2-1/2", which is more restrictive than the UPC, which is only 2-1/4".

6-22. **IPC Section 608.16.3, Heat exchangers.** This section uses the terms "essentially toxic" and "essentially non-toxic" to address restrictions on the use of single-wall heat exchangers for domestic hot water. The IPC defines essentially non-toxic in Section 202, GENERAL DEFINITIONS, as having a Gosselin rating of 1. However, Gosselin ratings indicate the relative toxicity of various substances and household products ranging from a low of "1" to a high of "6". Furthermore, Gosselin's book is intended as an aid to doctors and poison control centers in quickly evaluating potential cases of poisoning that are phoned in. Products are not labeled with a Gosselin rating. The amount of the substance ingested is also a
factor in its toxicity. For example, potable water can cause death if too much is ingested.

The Commentary on the 1997 IPC describes a Gosselin rating of "1" as practically non-toxic. (Emphasis added.) The lethal dose of a substance having a Gosselin rating of "1" is listed as "more than 1 quart" for a 150 pound person. The IPC does not require that single-wall heat exchangers be permanently marked to indicate the restrictions on additives nor does IPC Section 608.16.3 require single-wall heat exchangers to have warning labels.

UPC Appendix L 3.2 permits single-wall heat exchangers if any additives used are recognized as safe by the FDA. Such products would typically bear the FDA approval. Furthermore, the UPC requires that the equipment must be permanently labeled to indicate that only FDA approved additives shall be used.

6-23. **IPC Section 608.16.4, Connections to automatic fire sprinkler systems and standpipe systems.** This section places no restrictions on the use of double check valve assemblies or double check detector assemblies for backflow protection from fire protection systems.

UPC Section 603.4.18.2 permits only reduced pressure backflow preventers or reduced pressure detector assemblies where there is a non-potable water source (such as a pond or stream) within 1700 feet of a fire department connection. This corresponds to the recommendations of national backflow prevention organizations. (AWWA M14, Class 4)

6-24. **IPC Table 608.17.1, DISTANCE FROM SOURCES OF CONTAMINATION TO PRIVATE WATER SUPPLIES AND PUMP SUCTION LINES.** A comparison of IPC Table 608.17.1 and UPC Table K-1 shows a significant reduction in the IPC in the required separation between water wells and seepage pits, septic tanks, sewers, and subsurface disposal fields. The writers are not aware of any justification for this significant reduction in these dimensions.

<table>
<thead>
<tr>
<th>Source of Contamination</th>
<th>Distance (Feet)</th>
<th>Source of Contamination</th>
<th>Distance (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnyard</td>
<td>100</td>
<td>Not included</td>
<td></td>
</tr>
<tr>
<td>Farm Silo</td>
<td>25</td>
<td>Not included</td>
<td></td>
</tr>
<tr>
<td>Pasture</td>
<td>100</td>
<td>Not included</td>
<td></td>
</tr>
<tr>
<td>Pumphouse floor drain</td>
<td>2</td>
<td>Not included</td>
<td></td>
</tr>
<tr>
<td>of cast iron draining to</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For SI: 1 foot = 304.8 mm.

UPC Footnote 3, "All drainage piping shall clear domestic water supply wells by at least fifty (50) feet (15240 mm). This distance may be reduced to not less than twenty-five (25) feet (7620 mm) when the drainage piping is constructed of materials approved for use within a building."

6-25. **IPC Section 609, HEALTH CARE PLUMBING.** This section deals with partial requirements of health care plumbing and health care water systems.

The UPC has added some special requirements for health care plumbing in Chapter 13 and in the backflow protection section of Chapter 6. The unique requirements for plumbing in hospitals are usually established by the design professionals and governmental agencies that oversee their design and operation.

6-26. **IPC Section 609.2, Water service.** This section requires that all hospitals have two water services regardless of the size of the facility, the number of beds, or the fact that the public water system may only have one water main in the adjacent area. Therefore, this code requirement seems to be excessive and beyond the normal requirements of a minimum plumbing code.

The UPC does not have this requirement.

6-27. **IPC Section 609.7, Condensate drain trap seal.** This section requires that a water supply be provided for cleaning, flushing, and resealing the [emphasis added] condensate traps in health care facilities. It is not clear whether this requirement is meant for all condensate traps in health care facilities or just certain traps on special equipment, which are not identified. As written, the IPC requires that water supplies be run to all HVAC condensate traps for maintenance purposes. This is a very unusual and excessive requirement. A local water supply is not needed to maintain HVAC traps. The writers are not aware of any piece of equipment that needs a local water supply for condensate trap maintenance.

The UPC does not have this requirement.

G. CHAPTER 7, SANITARY DRAINAGE

7-1. **IPC Section 702, MATERIALS.** This section has no restrictions on the location of ABS and PVC drain and waste piping.
UPC Section 701.1.2 has been revised and no longer prohibits ABS and PVC DWV piping in structures that are higher than three stories above grade. It does add limits on flame-spread index and smoke-developed index for piping exposed in ducts or plenums, except in individual dwellings.

7-2. **IPC Tables 704.1, SLOPE OF HORIZONTAL DRAINAGE PIPE, and 710.1(1), BUILDING DRAINS AND SEWERS.** These tables permit 3” horizontal drains to run at 1/8” per foot slope. All other model plumbing codes require that 3” and smaller drain piping be run at 1/4” per foot minimum slope. The 1/4” minimum slope assures sufficient flow velocity for the transport of solids. Two (2) feet per second velocity is the minimum recommended for soil and waste lines. A 3” drain at 1/8” per foot slope has a flow velocity of only 1.59 fps. A 3” drain at 1/4” per foot slope has a flow velocity of 2.25 fps. This is particularly important where 1.6 gpf water closets are involved due to the limited waste carry of some low flow water closets.

UPC Section 708.0 requires that horizontal drain piping be run at 1/4” per foot minimum slope where possible. It permits pipe 4” and larger to be run at 1/8” per foot slope when approved by the Administrative Authority.

7-3. **IPC Section 704.3, Connections to offsets and bases of stacks.** This section allows fixture connections at bases of stacks or stack offsets as close as ten pipe diameters downstream from the base of the stacks or the stack offsets. However, with sudsing, this dimension could be insufficient to prevent the suds from coming up into a fixture located near the base of the stack or stack offset.

UPC Section 711.0, Suds Relief, dictates a minimum of 8 feet from the base of the stack containing discharge from suds-producing fixtures to any connection to a fixture, with certain exceptions.

7-4. **IPC Section 704.5, Dead ends.** This section prohibits the installation of dead ends which in the definitions are listed as any developed length of greater than two feet. However, cleanout extensions and approved future fixture drainage piping are not considered dead ends. Therefore, with all of these exceptions, why does the IPC prohibit dead ends?

The UPC does not have this restriction on dead ends.

7-5. **IPC Section 705.16.2, Copper or copper-alloy tubing to galvanized steel pipe.** This section requires that the connection between copper tubing and galvanized steel be made with a brass converter fitting or dielectric fitting. The writers have not seen dielectric fittings normally used on waste or vent piping.

The UPC does not have this requirement in the drainage section of the code.
IPC Table 706.3, FITTINGS FOR CHANGE IN DIRECTION. This table is more liberal than the UPC in its use of short radius fittings, particularly on individual fixture drains. However, the table fails to recognize the differences in terminology for the various fitting patterns in different drain pipe materials. For example, a hubless cast iron short sweep is not a short radius fitting and its use need not be restricted. In the plumbing industry, there are some fitting pattern names that are specific to only one material.

UPC Section 706.0 does not permit 1/4 bends or other short radius fittings in individual branch drains.

IPC Section 708.3.2, Building Sewers. The IPC requires that all sewers 8" and larger have manholes installed at each change of direction and at intervals not to exceed 400 feet. However, as now written, building sewers 8" size and larger require cleanouts at 100-foot intervals plus manholes at 400-foot intervals.

UPC Section 719.6 indicates that manholes may be used on any size sewer in lieu of cleanouts when approved by the Administrative Authority. Distance between manholes shall not exceed 300 feet.

IPC Section 708.3.3, Change of Direction. The IPC requires a cleanout at every change of direction greater than 45 degrees, but does not require a cleanout closer than every 40 feet. Therefore, this section may require more cleanouts in drainage piping than UPC 707.0. Furthermore, regardless of how many changes of direction occur on a drain or waste line within a 40' interval, still only one cleanout is required by the IPC.

UPC Section 707.0 requires cleanouts every 100 feet. Exceptions include lines less than five feet long and all lines above the first floor of the building. Furthermore, an additional cleanout is required for each aggregate horizontal change of direction exceeding 135 degrees. The requirement for fewer cleanouts in the UPC has not proven to be a problem in clearing blockages in drainage piping when modern drain cleaning equipment is used.

IPC Section 708.3.4, Base of stack. This section requires that cleanouts be installed at the base of each waste or soil stack regardless of their location within the building.

The UPC only requires cleanouts if the base of the stack is part of the building drain or the lowest drain line. The requirement for fewer cleanouts in the UPC has not proven to be a problem in clearing blockages in drainage piping when modern drain cleaning equipment is used.
7-10. **IPC Section 708.4, Concealed piping.** This section requires that cleanouts be provided on all drainage piping in concealed spaces. This would require that drainage piping above the ceiling is required to be provided with cleanouts and, if the ceiling space is less than 24", the cleanout would have to be extended up to a finished wall or out through the face of the building.

The UPC only requires cleanouts on the building drain, not on drainage piping above the lowest floor.

7-11. **IPC Section 708.4, Concealed Piping.** This section requires that the piping cleanout, where the crawl space is less than 24", shall be extended through and terminate flush with finished wall, floor, or ground surface, or shall be extended to outside the building.

UPC Section 707.10 indicates that the piping cleanout shall be extended to outside the building when there is less than 18" vertical and 30" horizontal clearance from the means of access to such cleanout and that no under-floor cleanout shall be located more than 20 feet from an access door, trap door, or crawl hole. This provides better safety for the building occupant and service personnel.

7-12. **IPC Section 708.8, Clearances.** This section requires that cleanouts on 6" and smaller pipes shall be provided with clearance of not less than 18" and cleanouts on 8" and larger pipes shall have a clearance of not less than 36".

UPC Section 707.10 is less restrictive than the IPC as it only requires that cleanouts on piping 2" or less shall have a clearance of 12" in front of the cleanout, and cleanouts on piping larger than 2" shall have a clearance of not less than 18". The requirement for less clearance for cleanouts in the UPC has not proven to be a problem in clearing blockages in drainage piping.

7-13. **IPC Table 709.1, DRAINAGE FIXTURE UNITS FOR FIXTURES AND GROUPS.** The IPC now distinguishes between 1.6 gpf water closets and greater than 1.6 gpf water closets. However, they distinguish between the demands of private and public plumbing fixtures only for water closets. The dfu values for flushometer tank water closets is the same whether private or public. The IPC fails to recognize use patterns for most other fixtures, which the UPC does. Plus the IPC does not recognize the higher demands caused by continuous use in assembly occupancies. Furthermore, the table omits listing significant types of fixtures which are in common use.

UPC Table 7-3 has been revised and now provides three (3) different use groups for all fixtures in lieu of four (4). There is no longer a distinction between single dwellings and 3 or more dwellings. The groups are now private, public, and assembly. The table still better addresses the demands of the
various fixtures based on their application. The dfu values in Table 7-3 are based on research by Stevens Institute, which revealed that peak drainage loads in dwellings are caused by bathtubs or combination bath/showers, clothes washers, and dishwashers. The time duration of these discharges is relatively long and combines with other fixtures to create the peak drainage loads.

UPC Table 7-3 also includes a much greater classification of fixture types for simplicity of use, as shown below. The UPC table contains 41 line items as opposed to only 27 contained in the IPC Table 709.1 (a 50% increase in fixture classifications).

<table>
<thead>
<tr>
<th>Arrows indicate IPC Table 709.1 fixture classifications.</th>
<th>Uniform Plumbing Code Table 7-3 Drainage Fixture Unit Values (DFU)</th>
<th>International Plumbing Code Table 709.1 Drainage Fixture Units for Fixtures & Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC Table 7-3 – Plumbing Appliance, Appurtenance or Fixture</td>
<td>Minimum Size Trap & Trap Arm</td>
<td>Private</td>
</tr>
<tr>
<td>→ Automatic Clothes Washers, commercial¹</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Bathroom group as defined in Section 202 (1.6 GPF water closet)²</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Bathroom group as defined in Section 202 (water closet flushing greater than 1.6 GPF)³</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Bathtub⁴ (with or without overhead shower or whirlpool attachments)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Bathtub or Combination Bath/Shower</td>
<td>1-1/2"</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Bidet</td>
<td>1-1/4"</td>
<td>1.0</td>
</tr>
<tr>
<td>→ Bidet</td>
<td>1-1/2"</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Clothes Washer, domestic, standpipe⁵ (Residential)</td>
<td>2"</td>
<td>3.0</td>
</tr>
<tr>
<td>→ Combination Sink and Tray</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Dental Lavatory</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Dental Unit or Cuspidor</td>
<td>1-1/4"</td>
<td>—</td>
</tr>
<tr>
<td>→ Dishwasher, domestic, with independent drain</td>
<td>1-1/2"²</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Drinking Fountain or Watercooler (per head)</td>
<td>1-1/4"²</td>
<td>0.5</td>
</tr>
<tr>
<td>→ Food-waste-grinder, commercial</td>
<td>2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Floor Drain, emergency</td>
<td>2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Floor Drain (for additional sizes see Section 702)</td>
<td>2"</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Floor Drains</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>→ Shower single head trap</td>
<td>2"</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Multi-head, each additional</td>
<td>2"</td>
<td>1.0</td>
</tr>
<tr>
<td>→ Lavatory, single</td>
<td>1-1/4"</td>
<td>1.0</td>
</tr>
<tr>
<td>→ Lavatory in sets of two or three</td>
<td>1-1/2"</td>
<td>2.0</td>
</tr>
<tr>
<td>→ Washfountain</td>
<td>1-1/2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Washfountain</td>
<td>2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Mobile Home, trap</td>
<td>3"</td>
<td>12.0</td>
</tr>
<tr>
<td>→ Receptor, indirect waste¹,³</td>
<td>1-1/2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Receptor, indirect waste¹,²</td>
<td>2"</td>
<td>—</td>
</tr>
<tr>
<td>→ Receptor, indirect waste¹</td>
<td>3"</td>
<td>—</td>
</tr>
<tr>
<td>→ Shower</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sinks</th>
<th>Uniform Plumbing Code Table 7-3 Drainage Fixture Unit Values (DFU)</th>
<th>International Plumbing Code Table 709.1 Drainage Fixture Units for Fixtures & Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar</td>
<td>Minimum Size Trap & Trap Arm</td>
<td>Private</td>
</tr>
<tr>
<td>→ Bar</td>
<td>1-1/2"</td>
<td>1.0</td>
</tr>
<tr>
<td>→ Commercial with food waste</td>
<td>1-1/2"²</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 709.2, DRAINAGE FIXTURE UNITS FOR FIXTURE DRAINS OR TRAPS

The DFU values for drain and trap sizes of fixtures not listed in Table 709.1 are less than required in UPC 702.0 as shown below.

<table>
<thead>
<tr>
<th>Fixture Category</th>
<th>DFU</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2 1/2</th>
<th>3 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen sink (with or without food-waste-grinder and/or dishwasher)</td>
<td>1 1/2"</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Laundry (with or without discharge from a clothes washer)</td>
<td>1 1/2"</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Service or Mop Basin</td>
<td>2"</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Service, flushing rim</td>
<td>3"</td>
<td>5.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Wash, each set of faucets (circular or multiple)</td>
<td>2 1/2"</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Urinal</td>
<td>2"</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Water Closet, 1.6 GPF Flushometer Tank</td>
<td>3"</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Water Closet, 1.6 GPF Flushometer Valve</td>
<td>3"</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Water Closet, greater than 1.6 GPF Gravity Tank</td>
<td>3"</td>
<td>8.0</td>
<td>10.0</td>
<td>10.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Water Closet, greater than 1.6 GPF Flushometer Valve</td>
<td>3"</td>
<td>8.0</td>
<td>10.0</td>
<td>10.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Footnotes:
- a For traps larger than 3 inches, use Table 709.2.
- b A showerhead over a bathtub or whirlpool bathtub attachments does not increase the drainage fixture unit value.
- c See Sections 709.2 through 709.4 for methods of computing unit value of fixtures not listed in Table 709.1 or for rating of devices with intermittent flows.
- d Trap size shall be consistent with the fixture outlet size.
- e For the purpose of computing loads on building drains and sewers, water closets or urinals shall not be rated at a lower drainage fixture unit unless the lower values are confirmed by testing.
- f For fixtures added to a dwelling unit bathroom group, add the DFU value of those additional fixtures to the bathroom group fixture count.

Note:
- 1 Indirect waste receptors shall be sized based on the total drainage capacity of the fixtures that drain therein to, in accordance with Table 7-4.
- 2 Provide a 2" (52 mm) minimum drain.
- 3 For refrigerators, ice makers, water stations, and similar low demands.
- 4 For commercial sinks, dishwashers, and similar moderate or heavy demands.
- 5 Buildings having a clothes washing area with clothes washers in a battery of three (3) or more clothes washers shall be rated at six (6) fixture units each for purposes of sizing common horizontal and vertical drainage piping.
- 6 Water closets shall be computed as six (6) fixture units when determining septic tank sizes based on Appendix K of this Code.
- 7 Trap sizes shall not be increased to the point where the fixture discharge may be inadequate to maintain their self-scouring properties.
- 8 Assembly (public use) (See Table 4-1).
IPC Section 710.1, Maximum fixture unit load.

The IPC fixture loading for drainage piping as shown in Table 710.1(1), BUILDING DRAINS AND SEWERS, is more liberal in some cases than the fixture loading shown in UPC Table 7-5. However, UPC Table 7-5 allows greater DFUs on horizontal lines than does IPC Table 710.1(2) for "total for a horizontal branch". Therefore, the UPC has greater allowance for DFU carrying capacity in horizontal drain lines for most installations. See comparisons below.

IPC Table 710.1(1)
Building Drains and Sewers

<table>
<thead>
<tr>
<th>Diameter of Pipe (Inches)</th>
<th>Slope per Foot</th>
<th>1/4 Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2-1/2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

IPC Table 710.1(2)
Horizontal Fixture Units Connected to Any Portion of the Building Drain or the Building Sewer, Including Branches of the Building Drain

<table>
<thead>
<tr>
<th>Size of Pipe (Inches)</th>
<th>Maximum Number of Drainage Fixture Units (DFU)</th>
<th>Total for a Horizontal Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2-1/2</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>360</td>
</tr>
<tr>
<td>5</td>
<td>360</td>
<td>620</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
<td>840</td>
</tr>
<tr>
<td>8</td>
<td>840</td>
<td>1,920</td>
</tr>
<tr>
<td>10</td>
<td>1,920</td>
<td>3,500</td>
</tr>
<tr>
<td>12</td>
<td>3,500</td>
<td>5,600</td>
</tr>
<tr>
<td>15</td>
<td>5,600</td>
<td>7,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

UPC Table 7-5
Maximum Unit Loading and Maximum Length of Drainage and Vent Piping

<table>
<thead>
<tr>
<th>Size of Pipe (Inches)</th>
<th>Maximum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2-1/2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

7-16. IPC Section 710.1, Maximum fixture unit load. The IPC fixture loading for drainage piping as shown in Table 710.1(1), BUILDING DRAINS AND SEWERS, is more liberal in some cases than the fixture loading shown in UPC Table 7-5. However, UPC Table 7-5 allows greater DFUs on horizontal lines than does IPC Table 710.1(2) for "total for a horizontal branch". Therefore, the UPC has greater allowance for DFU carrying capacity in horizontal drain lines for most installations. See comparisons below.

IPC Table 710.1(1)
Building Drains and Sewers

<table>
<thead>
<tr>
<th>Diameter of Pipe (Inches)</th>
<th>Slope per Foot</th>
<th>1/4 Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2-1/2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

IPC Table 710.1(2)
Horizontal Fixture Units Connected to Any Portion of the Building Drain or the Building Sewer, Including Branches of the Building Drain

<table>
<thead>
<tr>
<th>Size of Pipe (Inches)</th>
<th>Maximum Number of Drainage Fixture Units (DFU)</th>
<th>Total for a Horizontal Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2-1/2</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>360</td>
</tr>
<tr>
<td>5</td>
<td>360</td>
<td>620</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
<td>840</td>
</tr>
<tr>
<td>8</td>
<td>840</td>
<td>1,920</td>
</tr>
<tr>
<td>10</td>
<td>1,920</td>
<td>3,500</td>
</tr>
<tr>
<td>12</td>
<td>3,500</td>
<td>5,600</td>
</tr>
<tr>
<td>15</td>
<td>5,600</td>
<td>7,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

UPC Table 7-5
Maximum Unit Loading and Maximum Length of Drainage and Vent Piping

<table>
<thead>
<tr>
<th>Size of Pipe (Inches)</th>
<th>Maximum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>1</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2-1/2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

7-17. IPC Section 710, DRAINAGE SYSTEM SIZING, and Tables 709.1 and 709.2. Nowhere does it require that the minimum size for drainage piping for a water closet shall be 3". Also, Table 710.1(1) indicates that the minimum size for a building drain (emphasis added) serving a water closet shall be 3" but the IPC does not indicate the requirement that a minimum branch size to the water closet

...
shall be 3". Therefore, it could be 2-1/2", which is the trap way for some water closets.

UPC Tables 7-3 and 7-5 require a minimum of 3" drain piping for water closets.

7-18. **IPC Section 710.1.1, Horizontal stack offsets.** The IPC requires that horizontal stack offsets be sized as shown in Table 710.1(1), except as modified by Section 711.4.

The UPC requires only Table 7-5 for determination of vertical and horizontal pipe sizing and does not require other considerations for pipe sizing.

7.19. **IPC Table 710.1(2), HORIZONTAL FIXTURE BRANCHES AND STACKS.** There appears to be a typographical error for the maximum number of DFUs on a 12" horizontal branch drain. The "2900" should probably read "3900".

7-20. **IPC Section 710.1.2, Vertical stack offsets.** The IPC requires that vertical offsets be sized in accordance with Table 710.1(2) except as modified by Section 711.1.1.

The UPC only requires the sizing of the offsets to be as shown in Table 7-5 with no other considerations required for pipe sizing.

7-21. **IPC Section 710, DRAINAGE SYSTEM SIZING, and Section 711, OFFSETS IN DRAINAGE PIPING IN BUILDINGS OF FIVE STORIES OR MORE.** These sections use branch intervals in sizing drainage stacks. Table 710.1(2) has limits on the total number of drainage fixture units that:

1. can discharge into one (1) branch interval. This makes sure that the stack is large enough that the flow introduced in one (1) branch interval does not block the stack and restrict its flow.

2. can discharge into stacks of up to three (3) branch intervals. This adds some diversity in the total number of DFUs allowed.

3. can discharge into stacks of greater than three (3) branch intervals. This includes more diversity in the total allowable load on the stack.

By definition, branch intervals correspond to a story height but are not less than eight (8) feet high. This is so that where there are branch connections from fixtures on one floor that have connections both above and below the floor, it does not count as more than one (1) branch interval. However, a problem can occur if the floors of the building are staggered and drain connections from fixtures on two (2) floors occur within an eight (8) foot height.
UPC Table 7-5 does not use the branch interval principle and also allows 1-1/4" stacks for one DFU fixtures. Furthermore, the UPC permits greater carrying capacity in vertical drainage piping than does the IPC in most of their "one branch interval stacks" and "three branch intervals or less" which results in smaller drainage sizing with the UPC method for most installations. For comparison of the carrying capacity of stacks, see tables below.

IPC Table 710.1(2)

<table>
<thead>
<tr>
<th>Diameter of Pipe (Inches)</th>
<th>TOTAL DISCHARGE INTO ONE BRANCH INTERVAL</th>
<th>TOTAL FOR STACK OF THREE BRANCH INTERVALS OR LESS</th>
<th>TOTAL FOR STACK GREATER THAN THREE BRANCH INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2-1/2</td>
<td>9</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>240</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>540</td>
<td>1,100</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>960</td>
<td>1,900</td>
</tr>
<tr>
<td>8</td>
<td>600</td>
<td>2,200</td>
<td>3,600</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>3,800</td>
<td>5,600</td>
</tr>
<tr>
<td>12</td>
<td>1,500</td>
<td>6,000</td>
<td>8,400</td>
</tr>
<tr>
<td>15</td>
<td>Footnote c</td>
<td>Footnote c</td>
<td>Footnote c</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a Does not include branches of the building drain. Refer to Table 710.1(1).
b Stacks shall be sized based on the local accumulated connected load at each story or branch interval. As the total accumulated connected load decreases, stacks are permitted to be reduced in size. Stack diameters shall not be reduced to less than one-half of the diameter of the largest stack size required.
c Sizing load based on design criteria.

IPC Table 710.1(2), HORIZONTAL FIXTURE BRANCHES AND STACKS

IPC Table 709.1 now addresses whether or not water closets are rated for 1.6 GPF or greater than 1.6 GPF, but the IPC still has no restrictions on the number of water closets on a 3" drainage stack. As an example, if the stack served only water closets in hotel guest rooms, the IPC would permit as many as twenty-four (24) 1.6 GPF water closets on the stack.

The UPC restricts 3" stacks to four (4) water closets to avoid possible overloading of the stack in the event that more than the predicted number of fixtures are flushed simultaneously.

IPC Section 711, OFFSETS IN DRAINAGE PIPING IN BUILDINGS OF FIVE STORIES OR MORE. This section contains six sections with different requirements as to where the vents are required, how and where they have to be installed, and their sizing, etc. Furthermore, while the title of IPC Section 711 refers to "buildings of five stories or more", the text refers to branch intervals.
UPC Table 7-5 can be used directly to size stacks and offsets in stacks, but the UPC does not require sizing changes for venting offsets.

7-24. **IPC Section 712, SUMPS AND EJECTORS.** This section does not require that sewage ejector pumps in commercial and other "public use" occupancies be duplexed. Also Section 712.3 refers to a "sump pump" for a sewage sump. Sump pumps do not have the solids-handling capacity of a sewage pump.

UPC Section 710.9 requires dual sewage pumps or ejectors in "public-use" occupancies that function independently to assure continuous operation of the drainage system during maintenance or in the event of equipment failure.

7-25. **IPC Section 713, HEALTH CARE PLUMBING.** This section still includes many provisions that are outdated regarding local vents for sterilizers and bed pan washers. Boiling-type sterilizers are no longer used in modern health care facilities. The requirements for vacuum systems in Sections 713.4, 713.5, 713.6 and 713.7 are far from complete and do not include sufficient requirements to assure that medical vacuum disposal systems in health care facilities are safe and sanitary. These four (4) sections are not coordinated with IPC Section 1202.1, which references NFPA 99C for the design and installation of medical vacuum systems.

The UPC has been revised to include the special requirements for plumbing in health care facilities in its Chapter 13, where its extensive requirements for medical gas and vacuum systems are located. The UPC references both NFPA 99C – *Gas and Vacuum Systems* and its parent document, NFPA 99 – *Health Care Facilities*, either of which can be used for medical gas and vacuum systems in health care facilities.

7-26. The IPC has no specific requirements for suds relief at the base of stacks or offsets of stacks serving suds-producing fixtures, such as bathtubs, clothes washers, kitchen sinks, and dishwashers.

UPC Section 711.0, in order to prevent the sudsing backup problem, prohibits fixture connections within eight (8) feet of the base of the stack or offsets of stacks having suds-producing fixtures except in dwellings or stacks less than three (3) stories high.

7-27. **IPC Section 714, COMPUTERIZED DRAINAGE DESIGN.** This sounds impressive but it is largely meaningless. The section does not indicate what computer program design methods are approved. Furthermore, COMPUTERIZED DRAINAGE DESIGN does not mandate that the design comply with the minimum requirements of IPC Section 105.4, Alternative engineered design.
a. **IPC Section 714.1** could be interpreted to mean that all plumbing drainage systems must be sized by computer.

b. **IPC Section 714.2** requires that the load on the drainage system be determined by:

1) the simultaneous discharge conditions from fixtures, appurtenances, and appliances, or

2) the sequential discharge conditions from fixtures, appurtenances, and appliances, or

3) the peak usage design condition.

These three criteria represent three (3) completely different conditions and the IPC does not specify which condition is to be used.

c. **IPC Section 714.2.1, Fixture discharge profiles.** This section requires that the flow rate versus time be in accordance with manufacturer's specifications. This data is normally not published by manufacturers and would normally be difficult to obtain.

d. **IPC Section 714.3, Selections of drainage pipe sizes.** This section permits sizing the drainage pipe up to (but not at) its full-bore flow. Historically, drainage pipe sizing tables have been typically based on the drainage pipes flowing only half full. This provides for air movement above the flow and allows for temporary overloads and surges. The writers are not aware of any engineering exception to this fundamental requirement.

e. **IPC Section 714.3.1, Selecting pipe wall roughness.** This section sounds impressive but does not say anything. Allowance for aging, deposit, and corrosion are historically included in the drainage pipe sizing tables in most plumbing codes, being that over time most drainage piping ends up with a similar roughness factor.

The UPC does not prohibit the use of computers to size drainage piping, provided that the sizing complies with all requirements of Chapter 7, Sanitary Drainage. If the resulting pipe sizing is different from that required by Chapter 7, the design would be considered as an "engineered plumbing system" and would have to comply with the requirements of Appendix L. Appendix L includes provisions to assure that the alternate design will comply with the public health and safety requirements of the code.

H. **CHAPTER 8, INDIRECT/SPECIAL WASTE**
8-1. **IPC Section 802.1.1, Food handling.** This section contains an exception which does not require an air gap in the discharge from a domestic dishwasher. It is possible for waste water from a flooded kitchen sink to flow back into the dishwasher and contaminate dishes that were clean.

UPC Section 807.4 requires dishwasher air gap fittings to be installed above the flood level of the kitchen sink on all domestic dishwasher discharge lines, and UPC Section 704.3 requires that commercial dishwashers be directly connected to maintain the sanitary conditions in the restaurant but also requires a floor drain be installed adjacent to the fixture to prevent backup of sewage, thereby protecting the sanitation of the dishes in the dishwasher.

8-2. **IPC Section 802.1.2, Floor drains in food storage area.** The exception to this section permits an air break in lieu of an air gap on an indirect waste line from a food storage area that has a backwater valve. A backwater valve would be of benefit only if the flood level rim of the receptor was at or above the flood level of the food storage area. This exception places total reliance on the backwater valve to protect the stored food from contamination by backflow of sewage. Backwater valves typically do not provide the leak-tightness that this exception should require.

UPC Section 801.2.2 permits air breaks in indirect wastes from food storage areas, but requires that the floor level rim of the receptor be at least six (6) inches lower than the lowest floor drain (in the food storage area). It further requires that where the food storage area (and indirect waste pipe) may be under a vacuum, only air gaps are permitted. The UPC thus requires more protection from sewage backflow in food storage areas than the IPC.

8-3. **IPC Section 803.1, Waste water temperature.** This section requires that waste water above 140° Fahrenheit simply be discharged to an indirect waste receptor that is connected to the drainage system. This method, in itself, does not prevent the excessively hot water from entering the sanitary discharge system. Plumbing codes limit the temperature of waste discharge to protect the drain piping and also to prevent the high temperature from adversely affecting bacterial action in the sewage.

UPC Section 810.0 contains detailed requirements for the sumps and condensers that are necessary to cool the waste before it enters the drainage system. Furthermore, Table 8-1 contains minimum sizing for blowoff condensers and sump pipe sizing.

8-4. **IPC Section 803, SPECIAL WASTES.** This section provides minimum criteria for corrosive/chemical wastes.
UPC Section 811.0 provides a far more comprehensive code section controlling chemical waste discharge.

8-5. The IPC does not contain any specific criteria for sizing air conditioning condensate piping.

UPC Section 815.1 and 815.2 and Table 8-2 provide complete criteria for sizing air conditioning condensate piping.

I. CHAPTER 9, VENTS

9-1. **IPC Section 901, GENERAL.** This section requires that every trap and trap fixture shall be vented in accordance with the venting method specified in this chapter.

UPC Section 902.0, Vents Not Required, specifies where indirect waste can be installed without vents which allows for lesser cost installations for specific equipment.

9-2 **IPC Section 902.1, Vents.** This section has no restrictions on the location of ABS and PVC vent piping.

UPC Section 903.1.2 has been revised and no longer prohibits ABS and PVC vent piping in structures that are higher than three stories above grade. It does add limits on flame-spread index and smoke-developed index for piping exposed in ducts or plenums, except in individual dwellings.

9-3 **IPC Section 903.1, Stack required.** This section was entitled "Main vent required" in the 1997 IPC and required a vent to run undiminished in size and as directly as possible from the building drain to the open air above the roof. The required size of this vent was not clear. This section has been changed in the 2000 IPC and no longer refers to the "main vent" as such. It now requires at least one stack that is not less than one-half the size of the required building drain, but it does not indicate whether this refers to a vent stack or a stack vent, which is the title of Section 903. If it is a stack vent, there would be a drainage stack connected as directly as possible to the building drain instead of a vent. New Section 903.1.1 indicates that the main vent could be a stack vent, in which case would the drainage stack have to be at least one-half the size of the required building drain? This section is still not clear on what it requires.

UPC Section 904.1 requires that each drainage system have one or more vents with an aggregate cross-sectional area that is not less than that of the largest required building sewer. This assures adequate venting of the system and typically adds little or no cost to the plumbing system, depending on its layout.
9-4. **IPC Section 903.2, Vent stack required.** This section requires vent stacks for drainage stacks having only five (5) branch intervals or more.

UPC Section 907.1 only requires vent stacks for drainage stacks extending ten (10) stories or more. There are no indications that this causes inadequate venting of the stack and branches of the building drain.

9-5. **IPC Section 904.2, Frost closure.** This section requires 3" minimum size vents to prevent frost closure. Furthermore, the IPC requires enlargement where the 97.5 percent value (ASHRAE) for outside design temperature is less than zero degrees Fahrenheit (-18 degrees C.) This temperature, however, is not the minimum winter design temperature but is the normal winter heating design temperature for buildings. Normally in the middle of the night the heating system may or may not be at maximum capacity, but the plumbing system would still be exposed to the colder minimum temperature. Also from the ASHRAE Design Manual, the 97.5% value is exceeded in a normal year by at least 54 hours. Therefore, this 97.5% temperature is not the appropriate temperature to use to protect a plumbing vent terminal from freezing. The edition of the ASHRAE Fundamentals Handbook from which Appendix D was extracted also listed 99% temperature values. In addition, the more recent ASHRAE Fundamentals Handbook edition lists the mean of the annual daily minimum extremes which is the more appropriate temperature to be used for freeze protection.

UPC Section 906.7 requires 2" minimum vents to prevent frost and snow closure. The 2" size has proven to be adequate. Also, the UPC requires that any installation that has a minimum design temperature below zero degrees F. be so protected, as opposed to the 97.5% design temperature used by the IPC.

9-6. **IPC Section 904.5, Location of vent terminal.** This section allows that vent terminals may be two (2) feet above any opening and within ten (10) feet horizontally of an opening.

UPC Section 906.2 requires that vent terminals be at least three (3) feet above any opening within ten (10) feet horizontally. The three-foot dimension is derived from the BMS 66, the basis of most modern plumbing codes.

9-7. **IPC Section 904.5, Location of vent terminal.** This section does not indicate how close a vent termination can be to a lot line or property line. It refers only to openings in buildings. Section 904.6 requires that a vent extension through a wall must be 10 feet from a lot line and 10 feet above grade, but this only applies to sidewall vents.
UPC Section 906.2, Vent Terminations, requires that vents terminate not less than three (3) feet in any direction from any lot line; alleys and streets excepted.

9-8. **IPC Section 904.6, Extension through the wall.** This section permits sidewall vent terminals. It does not require that the vent terminal be turned up or down. Furthermore, sidewall vents that terminate horizontally are subject to direct wind loads. A 45 mile per hour wind produces a pressure of 1" wg, which when added to the 1" wg design basis for the vent piping, could blow a 2" trap seal and create an unsanitary condition. In addition, sidewall vent terminals must be protected (by screens?) against the entrance of birds or rodents. This creates a maintenance problem and the potential for the vent becoming blocked and ineffective.

The UPC does not allow side wall vents but requires all vents to terminate above the roof.

9-9. **IPC Section 904.6, Extension through the wall.** This section does not indicate how far the vent line has to terminate from the wall. Therefore, wind blowing against the wall could create additional pressure even if the pipe is turned down or up, as the wall acts as a wind break. Furthermore, this section indicates that vents shall not be installed below a roof extension if they have soffit vents. However, one could have a roof extension without soffit vents and then sewer gas could be trapped underneath the roof extension and could migrate over to openable windows that are located ten feet away. This would allow sewer gas into the building and there is no prohibition against this condition in the IPC.

The UPC does not allow sidewall vents and also requires in Section 906.1 that the vent terminate not less than one foot from any vertical surface.

9-10. **IPC Section 904.7, Extension outside a structure.** This section again uses the 97.5 percent design temperature value for requirements for protection of vents outside the structure from freezing by insulation, heat or both. This is the wrong outside temperature to use. (See Item 9-5 above.)

UPC Section 906.7 requires the use of the minimum design temperature instead of the 97.5% design temperature figure.

9-11. **IPC Section 905.1, Connection.** This section has been changed so that air admittance valves are no longer considered as exceptions to extending vents to the outdoor air. However, as now written, it permits any [emphasis added] individual, branch, or circuit vent to connect to an air admittance valve, without reference to Section 917, which has limitations on where air admittance valves can be used.

The UPC does not permit air admittance valves. (For reasons see Item 9-28 below.)
9-12. **IPC Section 905.2, Grade.** This section indicates that all vent pipes be so graded (emphasis added) and connected as to drain back to the drainage pipe by gravity.

Upc Section 905.1 indicates that "all vents shall be free from drops or sags and such vents shall be level or shall be graded and connected as to drip back by gravity to the drainage pipes." Therefore, it is not required to grade vents. This simplifies the installation of vent piping by not having to grade them.

9-13. **IPC Section 905.6, Side inlet.** This section has been deleted in the 2000 IPC. It permitted wet vents to connect to a side inlet on a closet bend. It is not clear now whether side inlet closet bends are prohibited or not.

The UPC now includes wet venting of water closets in Appendix L 6.2 and 6.3 for those jurisdictions who permit this method of venting. However, whether or not side inlets are permitted is a matter of interpretation. Section L 6.2.1 prohibits wet vent openings below the weir of the trap that they are venting, but Section 905.5 exempts water closets from that requirement.

9-14. **IPC Section 906.1, Distance of trap from vent, and Table 906.1, MAXIMUM DISTANCE OF FIXTURE TRAP FROM VENT.** This section and table establish the allowable distances between traps and their protecting vents to prevent self-siphonage. The purpose is to keep the vent pipe opening at the end of the trap arm above the overflow weir of the trap.

Upc Table 10-1 has allowable trap arm lengths that are less than those shown in IPC Table 906.1. The shorter distances between the trap and its vent allows for the longer sweep of some fittings, such as combination wyes and 1/8th bends.

9-15. **IPC Section 908.3, Connection at different levels.** This section is confusing. It sizes the vertical drain between the two fixtures using Table 908.3 – Common Vent Sizes. However, Table 908.3 sizes the piping according to the DFU value for the upper fixture only, without regard for the lower fixture. According to Table 908.3, a 1-1/2" pipe could serve as a wet vent for a water closet. But Table 909.3 – Wet Vent Size requires a 2" wet vent from a lavatory to a water closet.

Upc Section 908.0 – Vertical Wet Venting requires that the wet vented section be at least one size larger than the minimum size waste for the upper fixture or one size larger than required to drain and vent both fixtures, whichever is larger. It also requires that the pipe be 2" minimum size.

9-16. **IPC Section 909, WET VENTING.** This section has criteria for horizontal and vertical wet venting two bathroom groups on the same floor. However, the code
does not fully describe how to determine the DFU load in the various portions of
the wet vent piping. In the Commentary of the 1997 IPC, it takes one (1) full
page of text and eleven (11) diagrams to explain all of the possible conditions that
affect the arrangement of the wet vent piping and its sizing. This section specifi-
cally addresses two bathroom groups. It is not clear whether wet venting is per-
mitted in a single bathroom group.

IPC Section 909.1, Wet vent permitted. This section allows the fixtures to be
connected in any combination and permits water closets to discharge into the wet
vent piping. IPC Table 704.1 permits 3" drain piping to be sloped at only 1/8"
per foot. Thus, the discharge of one or two water closets into a 3" wet vent
sloped at 1/8" per foot will overfill the line and interfere with its venting function.
The UPC now includes wet venting of single and back-to-back bathroom
groups in Appendix L 6.2 and 6.3 for those jurisdictions who permit this
method of venting.

9-17. IPC Section 910, WASTE STACK VENT. This section permits waste stacks
to vertically wet vent limited numbers of drainage fixture units (DFU) in a single
stack concept. The DFUs are limited to 1/3 to 1/20 the maximum allowed DFUs
for waste stacks with vented fixtures. However, the single stack concept has been
discontinued and unused for a number of years because of the high failures of fix-
tures installed on this system concept. Furthermore, the origin of the IPC sizing
data is unknown to the writers.
The UPC does not recognize waste stack venting other than vertical wet
venting as allowed in Section 908.0.

9-18. IPC Section 911, CIRCUIT VENTING. This section permits circuit venting of
up to eight (8) fixtures on a horizontal branch drain without venting the individual
fixtures. This practice is common in large toilet rooms having rows of fixtures.
The UPC now includes battery venting (circuit venting) in Appendix L 6.1
for those jurisdictions who permit this method of venting. The UPC does
not allow the battery vents and relief vents to be used at wet vents. The
IPC permits up to four (4) DFU to discharge into a relief vent.

9-19. IPC Section 912, COMBINATION DRAIN AND VENT SYSTEM. This sec-
tion permits a combination waste and vent system where conventional venting is
not practical. Examples are floor drains in large warehouses, markets, and service
outlet drains in exhibition halls. The drain pipes are sized per Table 912.3 to pre-
sumably oversize them to lower the depth of flow and thereby providing free
movement of air to avoid disturbing the trap seals in the fixtures being drained.
Water closets and urinals cannot be connected to a combination waste and vent
system.
UPC Section 910.0 permits combination waste and vent systems. The pipes must be increased two sizes and branch lengths are limited to fifteen (15) feet of unvented length. Plans must be approved by the Administrative Authority before installation.

9-20. **IPC Table 912.3, SIZE OF COMBINATION DRAIN AND VENT PIPE.** This table has two columns which are both under the title Maximum Number of Drain-age Fixture Units. The first column is "Connecting to a Horizontal Branch or Stack" and the second is "Connecting to a Building Drain or Building Subdrain." The first column increases the pipes one size compared to Table 710.1(2) for horizontal fixture branches. The second column increases the pipes one size, except for 1-1/2", compared to Table 710.1(1) for building drains and sewers at 1/2" slope, which is the maximum allowable slope for combination waste and vent piping. The writers are unaware of what the second column is actually based on since the IPC permits combination waste and vent piping to be sloped less than 1/2" and also why there is a difference in the allowable DFUs based on what the combination waste and vent piping connects to. The IPC sizing method does not consider the slope of the piping.

The UPC simply increases the combination piping two sizes larger than conventionally vented drain piping.

9-21. **IPC Section 913, ISLAND FIXTURE VENTING.** This section permits island fixture venting with the vent pipe at the sink permitted to be below the flood level rim of the sink, then turned down and connected to the horizontal drain beneath the floor. This is similar to UPC Section 909.0.

9-22. **IPC Section 914.1, Relief vents - stacks of more than 10 branch intervals, where required.** This section requires relief vents for soil and waste stacks at intervals of ten (10) branch intervals. This is inconsistent with Section 903.2, which requires a vent stack for drainage stacks that are five branch intervals.

UPC Section 907.1 requires a vent stack for drainage stacks that are ten (10) or more stories high. It then requires that a relief vent (yoke vent) be connected to the vent stack at five-story intervals starting from the top down.

9-23. **IPC Section 915, VENTS FOR STACK OFFSETS.** This section has requirements for venting horizontal offsets in stacks having five (5) branch intervals or more.

The UPC has no specific requirements for venting horizontal offsets in drainage stacks, but the upper and lower portions of the stack should be considered as separate stacks and vented accordingly.
9-24. **IPC Table 916.1, SIZE AND DEVELOPED LENGTH OF STACK VENTS AND VENT STACKS.** IPC Table 916.1 determines maximum developed length of vents from three factors: Fixture units being vented, size of waste stacks, and size of the vent. This table is a far more complex chart to use than UPC Table 7-5 which gives maximum length of feet and maximum vent size based solely on fixture unit loading. Furthermore, the IPC does not have any restrictions on the horizontal length limitation on the vent piping. Therefore, the entire developed length could be horizontal according to this table. The table has a larger range of pipe sizes (15" drain stack and 12" vent) and allowable DFU loadings per vent pipe size than UPC Table 7-5.

UPC Table 7-5 is much easier to use and provides a note that only one-third of the total developed length of the vent may be installed horizontally without increasing size. The UPC uses Table 7-5, which is limited to 12" drains and 8" vents, to size all vent piping.

9-25. **IPC Section 916.2, Vents other than stack vents or vent stacks.** This section requires that vents, other than stack vents or vent stacks, be one-half the pipe size of the equivalent drain(s) that it is venting. This method requires sizing drains that do not exist in order to size the various sections of vent piping. Vent piping exceeding 40 feet in developed length must be increased one pipe size.

The UPC uses Table 7-5 to size drain and vent piping. It permits up to one-third of the maximum listed developed length of the various vent pipe sizes to be horizontal. The required vent pipe sizes in Table 7-5 are generally larger than those required by IPC Section 916.2.

9-26. **IPC Section 916.4.1, Multiple branch vents exceeding 40 feet in developed length.** Section 916.4 has sizing requirements for common branch vents that have multiple branch vents connected to them. It appears that Section 916.4.1 should be referring to the common branch vent rather than the multiple branch vents. The use of the term "multiple branch vents" is confusing.

This is far more confusing than UPC Table 7-5 in which the venting is simply sized on the fixture units and the length of the pipe and not whether it is a multiple branch. Furthermore, the UPC permits up to one-third of the maximum allowable length of a vent pipe to be horizontal. There are no limits on length if the vent is increased one pipe size.

9-27. **IPC Table 916.5.1, SIZE AND LENGTH OF SUMP VENTS.** This table sizes vents for sewage sumps, based on the discharge capacity (GPM) of the pump and the maximum allowable developed length of the vent. Footnote "a" requires that an allowance of 50% be made for fittings and other losses. Table 916.1 SIZE AND DEVELOPED LENGTH OF STACK VENTS AND VENT STACKS does not have a similar requirement. This seems inconsistent.
UPC Section 710.10 sizes sewage sump vents based on the fixture unit load served by the sump, using Table 7-5. An allowance for fittings and other losses is included in the maximum allowable lengths in the table.

9-28. **IPC Section 917, AIR ADMITTANCE VALVES.** The IPC permits the use of fixture or branch type air admittance valves in lieu of vents to the outdoor air. Section 917.7 requires that only one stack vent or vent stack be extended to the open air outdoors, but it has no sizing requirements for that vent, compared to the overall size of the drainage and vent system. Section 917.8 prohibits the installation of air admittance valves in HVAC supply or return air plenums because the valves require neutral surrounding air pressure to operate as designed.

Section 917.3 permits air admittance valves to be installed for horizontal branch drains up to four branch intervals from the top of a stack without relief vents. This provides no means to relieve positive pressures or permit air to circulate and equalize within the drain and vent piping.

The UPC does not allow the use of air admittance valves as they are mechanical and subject to malfunction in the field, they are affected by pressures within the building, they do not prevent or relieve over-pressurization in the drain and vent system, they can become fouled with backflow of waste and sewage, and they are an ongoing maintenance consideration for the building owner. Although the IPC prohibits air admittance valves in supply and return air plenums, it is not uncommon for entire buildings to be presurized (positive and negative) by the HVAC system or by vertical "stack effect". The writers of the UPC prefer the peace of mind that vents to the outdoors provide.

9-29. **IPC Section 918, ENGINEERED VENT SYSTEMS.** The IPC allows engineered small size vent piping. This is an example of decimal point engineering that does not provide sufficient margin of safety for varying field conditions, both at the time of installation and throughout the life of the system. Furthermore, a 1/2" or 3/4" size vent can be easily closed by any obstruction getting into the end of the vent or by a kink in the vent tubing, thereby destroying the beneficial effect of the venting system. In addition, the sizing concept is dependent upon the precise "design discharge load" of the fixture which is questionable if ever known initially. Furthermore, if a homeowner or occupant changes out a fixture and the flow rate becomes somewhat greater, the venting system may not function properly.

IPC Table 918.2 is based on "smooth pipe". In Appendix E, copper tube is referred to as smooth pipe. However, Section 918 does not indicate what piping materials are permissible for "engineered vent systems", therefore, any material could be used and the required correction factors for the calculations are not provided in the IPC. Lastly, using copper tubing for the venting system creates as
great an expense as a conventional venting system. Therefore, there is no significant savings in using the reduced size venting system.

IPC Section 918 does not appear to include sufficient data to design reduced-size vents. The IPC concept is completely different from the relatively simple procedure in Chapter 17 of the ASPE Data Book which includes all necessary data and limitations. ASPE also restricts reduced-size vents to residential fixtures in low rise (1 - 2 story) residential buildings and requires that some listed 1/2" and 3/4" vent sizes be increased in two-story buildings. Furthermore, ASPE does not permit reduced-size vents where the fixture is more than 15 feet above the building drain or its branches. ASPE additionally requires that vents not be reduced until 6" above the flood level rim of the fixture served. The 1997 IPC Commentary "suggests" the same thing, but vents can be reduced below the fixture overflow in the IPC. There are not the required restrictions on reduced-size venting in the IPC.

The UPC does not include reduced-size venting because it has not proven itself in the field and it does not provide sufficient margin of safety for dependable operation. However, reduced-size venting with appropriate restrictions could be submitted as an alternate method under Section 301.2 or as an engineered plumbing system under Section L 2.0.

9-30. **IPC Section 919, Computerized Vent Design.** This section is new in the 2000 IPC. It is not clear why this section is necessary in the code. It simply says that vent systems can be sized and designed using a computer program and that the design be based on the peak load on the drainage system. Section 919.1 requires that the computer program be approved, but it does not say what the basis of approval is. It does not require that the design and sizing comply with the other requirements of IPC Chapter 9.

The IPC has similar provisions for designing drainage systems using a computer program, but not water distribution piping or storm drainage piping.

The UPC does not prohibit using computer programs or any other means to design plumbing systems, so long as the results meet the requirements of the code.

J. CHAPTER 10, TRAPS

10-1. **IPC Section 1003, INTERCEPTORS AND SEPARATORS.** This section has specific requirements for where interceptors, separators, and grease traps are required.
UPC Sections 1009.1 and 1014.1 give the Administrative Authority more discretion in determining the need for interceptors and grease traps, based on the particular application.

10-2. **IPC Section 1003.3.2, Food waste grinders.** This section permits food waste grinders to discharge through grease traps, if the grease trap is rated for the flow capacity of the grinder.

UPC Section 1015.0 prohibits food waste grinders to discharge through grease traps unless specifically required or permitted by the Administrative Authority. Manufacturers of most grease traps recommend that food particles not be allowed to enter grease traps. The food particles become trapped with the grease and decompose, causing foul odors. Furthermore, the "contaminated" grease cannot be sold to renderers due to the food particles from the waste grinder in the grease.

10-3. **IPC Section 1003.4, Oil separators required.** This section includes very limited criteria for the design of oil and flammable liquid separators.

UPC Section 1017.0 has detailed requirements for the design and construction of oil and flammable liquid interceptors, including venting, line sizes, cleanouts, waste oil tanks, and pump-out connections.

K. **CHAPTER 11, STORM DRAINAGE**

11-1. **IPC Section 1101.7, Roof design.** This section requires that the roof be designed to withstand the level of the water based on the height of the overflows or scuppers assuming that all of the primary roof drains are blocked [emphasis added].

The UPC has requirements for primary and secondary roof drainage that are based on the roof design, but the UPC does not have requirements for the roof design itself, since it is not regulated by the plumbing code.

11-2. The IPC does not specifically address thermal expansion in storm drain piping.

UPC Section 1101.4., Expansion Joints Required, specifically requires expansion joints where there are temperature variations or physical conditions that would warrant the use of expansion joints.

11-3. **IPC Tables 1106.2, SIZE OF VERTICAL CONNECTORS AND LEADERS, and 1106.3, SIZE OF HORIZONTAL STORM DRAINAGE PIPING.** These tables need to be interpolated for the rainfall rates in Appendix B that fall between the listed whole numbers.
UPC Tables 11-1 and 11-2 list gallons per minute (gpm) of flow associated with the vertical piping and the sloped horizontal piping. Table D-1 lists rainfalls for cities in inches per hour and gpm per square foot of roof (gpm/sf). The roof area being drained (sf) can be multiplied by the gpm/sf to determine the required gpm of drainage. The pipe size can then be selected directly from Table 11-1 or 11-2 without interpolation.

11-4. **IPC Section 1106.4, Vertical walls.** This section adds 50% of the area of walls that drain rainwater onto roofs to the area of the roof to allow for wind-driven rain in sizing roof drainage systems.

UPC Section 1106.4 lists six (6) different orientations of walls and the various allowances for more accurately determining the adjusted roof area for rainfall. The highest added allowance is 50%. Some allowances are zero.

11-5. **IPC Section 1107.3, Sizing of secondary drains.** This section requires that secondary (emergency) roof drainage be sized for twice the primary rate and that the primary system be considered to be blocked. The primary rainfall rates are based on a 100-year, 60-minute storm. Using twice that rate is comparable to a 100-year, 15-minute storm.

This section is revised in the 2000 IPC, but it appears that some needed language was deleted. The section no longer says to divide the values for horizontally projected roof area (square feet) that were used for the primary drains by two (2) in order to size the secondary drains. It now says to double the primary rainfall rate, rather than half the allowable roof area. The secondary rainfall rates could exceed the rates listed in Tables 1106.3 and 1106.6 and there is no clear direction on how to determine the allowable secondary roof area. This approach to sizing the secondary drainage system is confusing and could be easily misinterpreted.

UPC Section 1101.11.2.1 permits the secondary roof drainage system to be sized for the same rainfall rates as the primary system. The primary system handles the 60-minute storms and the two systems together handle the more severe 15-minute storms.

Both the IPC and the UPC require that the secondary roof drainage system be piped independently from the primary system and discharge at grade.

11-6. **IPC Section 1108, COMBINED SANITARY AND STORM SYSTEM.** This section has criteria for sizing combined sanitary and storm water drains and sewers. It converts the sanitary fixture unit (DFU) load into equivalent square feet of roof, based on a rainfall rate of one inch per hour. However, the section does not indicate how to adjust the DFU equivalent roof area for the actual local rainfall rate used in the system design. It is necessary to refer to the 1997 IPC Commen-
11-7. **IPC Section 1109, VALUES FOR CONTINUOUS FLOW.** This section equates gpm of flow from sources other than rainfall to square feet of roof based on a rainfall rate of one inch per hour. It is necessary to refer to the 1997 Commentary for an explanation of how to convert the gpm flows for rainfall rates other than one inch per hour.

The UPC does not include sizing of combined sewers. It addresses requirements where combined sewers exist, but does not encourage their use by providing sizing data, as combined sanitary and storm systems are no longer looked on with favor due to federal clean water laws and the impact on the sizing of sewer systems and the capacity of sewage treatment plants.

UPC Chapter 11 and Appendix D provide means of sizing storm drainage piping on the basis of gpm, which simply allows gpm flows from sources other than rainwater to be added directly to the gpm of rainwater flow without conversion to equivalent square feet of roof for a particular rainfall rate.

11-8. **IPC Section 1110, CONTROLLED FLOW ROOF DRAIN SYSTEMS.** This section covers controlled flow roof drainage systems. The rainfall rate used is the same as a primary roof drain system (100-year, 60-minute storm). However, there is no reference to the requirement of a secondary drainage system as mandated under IPC Section 1107.

UPC Section 1108.0 covers controlled flow roof drainage in detail (14 paragraphs). It requires scuppers for emergency drainage. Furthermore, Tables 11-4 and 11-5 also dictate height of water and scuppers above the roof for controlled flow roof drains and the slope of the roof.

11-9. **IPC Section 1110, CONTROLLED FLOW ROOF DRAIN SYSTEMS.** This section requires that a controlled flow roof drainage system be considered as an "engineered plumbing system" with associated submittals, approvals, inspections, and testing. Furthermore, IPC Section 1110.1 requires that the rainfall rate used for design be in accordance with Section 1106.1, which is a 100-year, 60-minute storm. However, the 1997 IPC Commentary states that many engineers design for the total rainfall for the duration of a 25-year storm, which is not listed in the IPC. The intent of the IPC is not clear. The 1997 IPC Commentary also states that the purpose of controlled flow roof drainage is to cool the roof, whereas the primary intent is to reduce the peak flows in storm sewers.

The UPC does not require that controlled flow roof drainage systems be "engineered" and includes sufficient data for their design, construction, and
inspection without the need for extra engineering. The UPC requires that the calculations merely need to be submitted with the plans.

11-10. IPC Section 1110.4, Minimum number of roof drains. The IPC requires, "for controlled flow systems, not less than two roof drains to be installed in a roof area of 10,000 square feet or less and not less than four roof drains to be installed in roofs over 10,000 square feet." This means for a roof area of 10,001 square feet the number of required controlled flow roof drains jumps from two to four. Furthermore, the IPC does not provide information on the required number of controlled flow roof drains for roof areas over, say, 20,000 square feet. Therefore, a building of 100,000 square feet could, per code, only have four controlled flow roof drains installed. This does not seem prudent to the writers.

UPC Section 1108.1(3) requires that two roof drains shall be provided for each 10,000 square feet and no less than one additional roof drain for each additional 10,000 square feet over 10,000 square feet, which is a more accurate way of providing the number of roof drains required.

11-11. IPC Section 1111, Subsoil drains. This section covers subsoil drainage. It requires 4" minimum drain size.

IPC Section 1113.1.1, Pump capacity and head. This section requires that the sump pump have "capacity and head appropriate for the anticipated use requirements". It has no minimum requirements.

IPC Section 1113.1.2, Construction. This section requires that sump pits be not less than 18' in diameter.

IPC Section 1113.1.4, Piping. This section requires that pipe and fittings be equal to or larger than the pump discharge tapping.

UPC Section 1101.5 covers subsoil drainage in greater detail than the IPC. It requires 3" minimum drains and sump pits that are 15" in diameter by 18" deep. Minimum pump flow rates are 15 gpm and the minimum discharge pipe size is 1-1/2". Furthermore, UPC Sections 1101.7 and 1101.8 cover areaway drains and window well drains, which are not addressed in the IPC.

L. CHAPTER 12, SPECIAL PIPING AND STORAGE SYSTEMS.

12-1. IPC Chapter 12, SPECIAL PIPING AND STORAGE SYSTEMS. This chapter was formerly for fuel gas piping. The IPC presently does not include requirements for fuel gas piping.
UPC Chapter 12, Fuel Piping, covers the sizing and installation of fuel gas piping in complete detail. In addition, Table 14-1 lists NFPA 54 as a referenced standard.

12-2. **IPC Chapter 12, SPECIAL PIPING AND STORAGE SYSTEMS.** This chapter is very limited, the scope is not clear, and there are several contradictions. For example, Section 1202 references NFPA 99C for medical gas and vacuum piping systems. However, it also references the mechanical code for vacuum system exhaust, even though vacuum piping and exhaust is included in the scope of NFPA 99C. In addition, it references NFPA 50 - *Standard for Bulk Oxygen Systems at Consumer Sites* and NFPA 51 - *Oxygen-Fuel Gas Systems for Welding, Cutting, and Allied Processes* for non-medical oxygen systems. However, non-medical oxygen systems and other compressed gas systems do not appear to be within the scope of the IPC. Also, NFPA 50 is referenced in NFPA 99C for medical bulk oxygen systems.

IPC Section 1202 also excludes cylinder storage, even though NFPA 99C includes cylinder storage for nitrogen and nitrous oxide systems.

The IPC does not reference NFPA 99 - *Health Care Facilities*, which is the parent document of NFPA 99C - *Gas and Vacuum Systems*. Although NFPA 99 covers more than medical gas and vacuum piping, it is a legally acceptable alternative to NFPA 99C for gas and vacuum piping systems.

UPC Chapter 13 includes detailed requirements for the design, installation, inspection, testing, and certification of medical gas and vacuum piping systems. In addition, the UPC references both NFPA 99 and NFPA 99C. It does not include references to non-medical oxygen systems or other special compressed gas piping or storage systems that are not within the scope of the UPC.

M. IPC APPENDIX C, GRAY WATER RECYCLING SYSTEMS

C-1. The gray water systems covered by this appendix are not the same as the gray water systems covered by UPC Appendix G. The IPC gray water system permits recycled waste water from bathtubs, showers, and lavatories to be used for flushing water closets and urinals within the same building. Also, Appendix C includes very general requirements for filtering and disinfection.

The UPC does not permit this type of gray water recycling system which is essentially "reclaimed water" and most health departments do not allow this type of untreated water to be utilized for flushing toilets in residential installations in the event that a child or pet might drink the "gray water" from the water closet. Therefore, this subject is covered in the UPC in Section 601.2.3, Reclaimed Water, and thoroughly in Appendix J, Reclaimed Water.
Systems for Non-Residential Buildings, which is specifically mandated as highly treated reclaimed water and not simply a partially treated gray water system. The UPC covers gray water systems for single family dwellings in great detail in Appendix G.

N. IPC APPENDIX D, DEGREE DAY AND DESIGN TEMPERATURES FOR CITIES IN THE UNITED STATES

D-1. This table lists winter heating degree days, 97-1/2% winter design temperature, summer design temperatures, and latitudes for various cities in the United States. The only apparent use for this appendix is in Section 904.2 (Frost Closure of Vents) and 904.7 (Extension of Vents Outside of Buildings) where they refer to the 97-1/2% outdoor design temperature. There are no references to heating degree days, summer design temperatures, or latitudes.

The UPC does not use this 97-1/2% winter design temperature in that this figure is exceeded a minimum of 54 hours a year and the minimum design temperature is the figure to be used for protection of the plumbing system. (Also see writers' comments concerning IPC Sections 904.2 and 904.7.)

O. IPC APPENDIX E, SIZING OF WATER PIPING SYSTEM

E-1. **IPC Appendix E.** This appendix, because it does not differentiate between 1.6 GPF water closets and greater than 1.6 GPF water closets, and does not differentiate between different use classifications, results in higher design water flow rates in most typical IPC installations and larger water pipe sizes in many IPC installations when compared to UPC Appendix A.

Example: Public general use toilet room with four (4) 1.6 gpf flush valve water closets and four (4) 1.0 gpf urinals. Lavatories are ignored in this comparison.

From the IPC:
4 Water closets @ 10 WSFU = 40 WSFU
4 Urinals @ 5 WSFU = 20 WSFU
40 + 20 = 60 WSFU = 54 gpm demand
Cold water supply pipe size = 2" "L" copper
2" pipe size required to keep velocity below 8 fps

From the UPC:
4 Water Closets @ 5 WSFU = 20 WSFU
4 Urinals @ 4 WSFU = 16 WSFU
20 + 16 = 36 WSFU = 45 gpm demand
Cold water pipe size = 1-1/2" or 2" "L" copper
Pipe size could be 1-1/2" or 2" depending on desired maximum velocity
The differences in demand gpm's between the IPC and UPC increase respectively as the number of fixtures increase, as does the increased pipe sizes. Therefore, the UPC creates less expensive water systems for most installations.

E-2. IPC Table E102, TABLE FOR ESTIMATING DEMAND. This table equates water supply fixture units (WSFU) to demand flow. Demand is listed in gallons per minute (gpm) and cubic feet per minute (cfm). The cfm figures extend to six (6) decimal places in some cases. The reason for this high degree of accuracy is not clear since the cfm figures do not appear to be used anywhere in the IPC.

The UPC does not include the cfm equivalent of WSFUs as it is not useful.

P. IPC APPENDIX F, STRUCTURAL SAFETY

F-1. This appendix lists restrictions on notches and holes in wood joists and rafters, cutting and notching wood studs, and holes in wood studs. There is no apparent reference to this appendix in the IPC. Furthermore, IPC Section 307.2, Cutting, notching, or bored holes refers to the International Building Code for limitations.

The UPC does not have this appendix, but the essence of this appendix is included in the body of the code as UPC Section 313.11.

Q. SECTIONS OF THE UPC THAT ARE NOT INCLUDED IN THE IPC.

1. **UPC APPENDIX B, EXPLANATORY NOTES ON COMBINATION WASTE AND VENT SYSTEMS.**

Combination waste and vent systems are covered by UPC Section 910.0 and Appendix B. This appendix further explains the requirements in non-code language.

2. **UPC APPENDIX C, SIZING OF CATEGORY I VENTING SYSTEMS.**

UPC Appendix C includes the complete requirements for sizing the venting system for Category I gas-fired equipment.

3. **UPC APPENDIX E, MANUFACTURED/MOBILE HOME PARKS AND RECREATIONAL VEHICLE PARKS.**

UPC Appendix E includes complete information on the design and installation of plumbing systems for mobile vehicle parks.

4. **UPC APPENDIX G, GRAY WATER SYSTEMS FOR SINGLE FAMILY DWELLINGS.**
UPC Appendix G covers gray water systems for underground landscape irrigation at single family dwellings. Untreated waste from bathtubs, showers, bathroom wash basins, clothes washers, and laundry sinks is collected in a holding tank and distributed to an underground irrigation/disposal field as allowed by many health department officials. This is significantly different than the requirements in IPC Appendix C.

5. **UPC APPENDIX H, RECOMMENDED PROCEDURES FOR DESIGN, CONSTRUCTION, AND INSTALLATION OF COMMERCIAL KITCHEN GREASE INTERCEPTORS.**

UPC Appendix H includes complete information on the subject of grease interceptors for commercial kitchens.

6. **UPC APPENDIX I, INSTALLATION STANDARDS.**

UPC Appendix I includes eighteen (18) IAPMO Installation Standards for various plumbing materials, systems, and procedures for the benefit of the inspection and installing personnel.

7. **UPC APPENDIX J, RECLAIMED WATER SYSTEMS FOR NON-RESIDENTIAL BUILDINGS** (emphasis added).

UPC Appendix J covers treated waste water systems used to supply water closets, urinals, and trap primers in other than residential buildings. The waste water must be treated by a public agency to criteria listed in the appendix and approved by the public health authority. The appendix includes requirements for piping, warning signs, valve seals, inspection, and cross-connection tests. This system is restricted to non-residential buildings because of the health concerns and the potential home handyman interconnecting potable and reclaimed water systems. This criteria is significantly different than the requirements in IPC Appendix C and provides a far greater level of public safety.

8. **UPC APPENDIX K, PRIVATE SEWAGE DISPOSAL SYSTEMS.**

UPC Appendix K includes complete information on the design, construction, inspection, and testing of private sewage disposal systems. Comparable data is now included in a separate IPC private sewage disposal code.

9. **UPC APPENDIX L, ALTERNATE PLUMBING SYSTEMS.**

UPC Appendix L includes sections on engineered plumbing systems, single-wall heat exchangers, fixture unit values for bathroom groups, vacuum drain-
age systems, battery venting, and wet venting in single and double bathroom groups.

10. **Useful Tables.**

 The tables and charts include inch-pound and metric conversions, properties of circles, and gravity flow in rates and velocities in half-full and full pipes of varying slopes.

-- CONCLUSIONS --

We, the authors, having reviewed both the 2000 International Plumbing Code and the 2000 Uniform Plumbing Code, find the following significant differences between the two code documents. The specific items noted in this section, however, only represent a few of all those noted in the main body of our comparison.

1. The IPC preface contains a disclaimer that relieves any liability to the IPC code writing bodies for compliance with the provisions of this code or for the completeness of the text. Any prudent individual would not normally adopt a document which its creators do not stand behind.

2. The UPC is self-contained and incorporates most of the documents that are needed to use or enforce this code and, therefore, is more user friendly. The IPC is not self-contained, it refers to numerous other code documents and, therefore, these other documents must be adopted at the time of adoption of the IPC. This makes the IPC far more difficult to use for the engineer, the plumbing contractor, and the plumbing officials.

3. Being that the UPC is more self-contained, it can be used as a teaching document for the members of the plumbing community, i.e., the inspectors, the designers, and the plumbing contractors. Whereas the IPC does not contain all of this information, but relies on other engineering manuals or other documents and, therefore, it is awkward to utilize as a teaching tool.

4. The IPC requires that products and materials be tested or certified by a third-party agency as opposed to a listing agency. The significance of the "third party" requirement is not clear. The UPC uses listing agencies.

5. The IPC now requires that determining the support spacing for all piping designed to provide for thermal expansion and contraction must be considered as an alternative engineering design involving design professionals. It fails to recognize the factors (which are not support spacing) that permit piping to expand and contract safely.

6. The requirements for sway bracing and pipe anchors in the IPC far exceed what is standard practice in the plumbing and piping industries, which is what the UPC is based on.
7. The IPC permits the use of one-step solvent cement for joining CPVC pipe and fittings up through 2" size without the use of a primer. The UPC requires a primer to assure that the joints are thoroughly bonded. This also avoids conflicts where the manufacturers of the pipe, fittings, and cement do not have consistent policies on the use of one-step cements.

8. The IPC requires unnecessary and undefined annual inspections of non-testable backflow prevention devices and air gaps to determine if they are operable. The UPC is based on industry standards, which require no such inspections.

9. The IPC has no special requirements for plumbing in food handling establishments to prevent leakage or condensation that could contaminate food or drink that is stored, prepared, or displayed under soil or drain piping.

10. The IPC requires far less fixtures for various types of occupancies than the UPC. This is contrary to the "potty parity" movement which demands more fixtures for women's toilet rooms to avoid the long waiting lines. The UPC also provides more water closets and urinals in most men's toilet rooms than the IPC and assures adequate water closets by limiting the number that can be deleted by installing additional urinals.

11. Gas piping is not within the scope of the IPC. It has no provisions for venting gas-fired water heaters. The UPC has a chapter on fuel gas piping and an appendix on venting.

12. The IPC is extremely lax and incomplete in its requirements for water pipe sizing. Its extensive use of 3/8" branch piping is not consistent with accepted practices in the plumbing trade and will produce water distribution systems having significantly reduced and variable water flow rates at the fixtures. The problem is of particular concern in dwellings having well pumps as their source of water pressure or low initial water pressure.

13. The IPC is inconsistent in its requirements as to the degree of regulation that it provides. For example, in the water section it requires two water services for all hospitals, but in the sanitary drainage section only one sewage ejector is required in public buildings. This type of inconsistency exists throughout the IPC.

14. The IPC places no limits on flow velocities in water distribution piping to prevent erosion corrosion and excessive pressure drop. The UPC limits velocities to industry standards.

15. The IPC does not recognize the different use patterns for plumbing fixtures in different occupancies except for the traditional "private" and "public" water closets. The UPC recognizes three (3) different use patterns and has appropriate fixture unit values for both water supply and drainage which allows the water and waste systems to be sized more correctly based on the usage.

16. The IPC has unusual and excessive requirements for local water supplies to maintain condensate trap seals in health care facilities.
17. The IPC permits 3" drain piping to be installed at 1/8" per foot slope, which does not provide the two feet per second flow velocity that is considered necessary for the transport of solids by the plumbing industry. The UPC requires 1/4" per foot slope for 3" drain piping which provides 2.25 FPS flow velocity.

18. The IPC horizontal branch drain pipe sizing is more restrictive than the UPC horizontal drain sizing. The UPC horizontal drain sizing permits more DFUs on horizontal drains which results in smaller pipe sizing with most UPC installations.

19. The IPC drainage stack sizing is far more liberal than the UPC in one respect. The IPC allows as many as 12 bathroom groups including water closets on a 3" drainage stack. However, the UPC allows more DFUs on vertical stacks having three or less branch intervals than does the IPC which results in smaller UPC sized stacks for most installations.

20. IPC Section 714 allows computerized drainage design which conflicts with IPC Section 105.4, Alternative engineered design, and IPC Section 105.2, Alternative materials, methods and equipment. The UPC requires that all engineered designs be in compliance with UPC Section 301.2, Alternate Materials and Methods.

21. The IPC requires more cleanouts in its drainage piping than does the UPC. These additional cleanouts are of limited value and if used, could contribute to unsanitary conditions within the building.

22. The IPC drainage and vent pipe sizing tables are more difficult to use than those in the UPC.

23. The IPC permits indirect wastes from floor drains in food storage areas to terminate with only an air break if they have a backwater valve. This seriously compromises the protection of stored food from the backflow of sewage and waste.

24. The IPC permits wet venting in two bathroom groups, but it does not appear to permit it in a single bathroom group. The UPC now permits wet venting in single and double bathroom groups.

25. The UPC is more conservative than the IPC in its requirement of when to prevent frost closure of vent terminals. However, the IPC is more conservative than the UPC by requiring 3" IPC minimum vent size rather than 2" UPC minimum to avoid frost closure.

26. The IPC permits sidewall venting, which is less positive than the rooftop venting required by the UPC.

27. The IPC allows the extensive use of mechanical vent devices (air admittance valves). These devices are not universally accepted in the plumbing industry and they are not approved in the UPC.
28. The IPC allows 1/2" and 3/4" vent pipe sizes in engineered vent systems. The UPC requires the traditional 1-1/4" minimum vent pipe size without the need for special engineering and approvals due to concerns about clogging.

29. The UPC does not recognize the single-pipe waste stack vent that the IPC allows. The inherent restrictions on the configuration of the stack limit its practical use.

30. The IPC does not recognize the problem of suds pressure in drainage stacks serving suds-producing fixtures. The UPC prohibits drain connections to portions of a stack that may be subject to blockage by suds.

31. The UPC requires more separation between well locations and potential sources of contamination than does the IPC, thereby providing a higher degree of public safety.

32. IPC Appendix C allows the use of semi-treated waste water for flushing water closets and urinals in all types of applications. The UPC restricts "reclaimed water" (Appendix J) only to commercial buildings and "gray water systems" (Appendix G) to residential units for underground irrigation only. Thus, the UPC provides a higher degree of public safety in the use of recycled water systems.

33. Where controlled flow roof drainage is used, the UPC requires fewer roof drains on roofs between 10,001 square foot area and 20,000 square foot area, but more roof drains on roofs over 30,000 square foot area. Subsequently, the IPC is more conservative than the UPC on small roofs. However, the UPC is more conservative on large roofs because the IPC provides no code criteria for the required number of controlled flow roof drains for large buildings.

34. The IPC makes specific references in various sections to the requirements of the International Building Code, the International Mechanical Code, the International Fuel Gas Code, the International Electrical Code, and the International Energy Conservation Code. This makes jurisdictions that have adopted other building, mechanical, fuel gas, electrical, and energy conservation codes amend those sections if they adopt the IPC. The UPC does not incorporate by direct reference other codes that may conflict with those that may have already been adopted by the jurisdiction.

35. The IPC uses "hard conversations" for metric equivalents of its inch-pound (I-P) pipe sizes. These do not agree with the "soft" metric pipe size designations that have been recommended by the Construction Metrication Council of the National Institute of Building Sciences and are used on all metric construction documents. The UPC uses the "soft" metric pipe size designations that are recommended by the Construction Metrication Council of the National Institute of Building Sciences and are being used on metric projects by the building design and construction industries.

36. The IPC references CSA standards for various materials, fixtures, faucets, and fixture fittings. The UPC does not reference CSA standards. Some of the requirements in CSA stan-
Standards are not the same as those in ANSI, ASTM, and ASME standards. An item that meets a CSA standard may not comply with all of the requirements of a comparable ANSI, ASTM, or ASME standard for the same item.

37. The IPC includes some requirements that are not normally the responsibility of the Administrative Authority for plumbing.

38. The IPC requires more engineering input to design, install, and inspect plumbing systems that meet its requirements. The UPC permits engineered systems but employs a more prescriptive format that allows most plumbing systems to be designed, installed, and inspected without the need for special engineering and approvals. Subsequently, any supposed savings created through the use of the IPC will be more than offset by additional engineering cost required. Therefore, what the IPC has done is increased engineering costs for lack of practical code language.

39. The numerous vagaries and inconsistencies in the IPC leave it open to interpretation by the various members of the plumbing and legal professions.

In conclusion, based on all of the items noted in this engineering comparison, it is the writers' professional opinions that the 2000 Uniform Plumbing Code is a far superior and preferable plumbing code than the 2000 International Plumbing Code on technical, practical, economic, public health, and safety matters. Furthermore, the coordinated input from plumbing officials, plumbing engineers, plumbing contractors, and the manufacturers of plumbing materials and products is far more evident in the UPC than in the IPC. Therefore, plumbing code adopting agencies should be aware of the distinct differences between the IPC and the UPC when considering plumbing code adoption.

State Licenses:

<table>
<thead>
<tr>
<th>Active</th>
<th>Inactive</th>
<th>Maryland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>Massachusetts</td>
<td>Connecticut</td>
</tr>
<tr>
<td>California</td>
<td>Nevada</td>
<td>Iowa</td>
</tr>
<tr>
<td>Colorado</td>
<td>New Jersey</td>
<td>Kansas</td>
</tr>
<tr>
<td>Florida</td>
<td>New Mexico</td>
<td>Michigan</td>
</tr>
<tr>
<td>Georgia</td>
<td>Ohio</td>
<td>Tennessee</td>
</tr>
<tr>
<td>Illinois</td>
<td>Oklahoma</td>
<td>Texas</td>
</tr>
<tr>
<td>Indiana</td>
<td>Pennsylvania</td>
<td>Washington</td>
</tr>
</tbody>
</table>
J. Richard Wagner, PE, CIPE, is the principal engineer for the Environmental Engineering Company in Baltimore, Maryland. He has forty-five (45) years of experience in the design and construction of mechanical systems and is active on various plumbing code committees including Baltimore County, the National Standard Plumbing Code (NSPC), and the Uniform Plumbing Code (UPC).

Edward Saltzberg, PE, CEM, CIPE, is a consulting engineer with over forty years of experience in the design and forensic review of plumbing, piping, HVAC, indoor air quality, and fire protection systems for all types of structures and systems. He has physically worked at most facets of construction, taught plumbing and mechanical system design, has been very active in code writing and interpretation, and has written and spoken extensively on plumbing matters.

One of the co-founders, and past president, of the American Society of Plumbing Engineers, Mr. Saltzberg has served the Society in many capacities over the years. He is currently licensed as a professional engineer in 14 states, a registered fire protection engineer, a certified energy manager, a journeyman plumber, and a fellow in the National Academy of Forensic Engineers. He has owned his own consulting engineering firm in southern California for 32 years and serves as its president. He has been retained by plaintiffs or defendants in over 200 litigation cases concerning plumbing and/or mechanical systems.
DESIGN and CONSTRUCTION EXPERIENCE

J. RICHARD WAGNER, PE, CIPE
Principal Engineer
ENVIRONMENTAL ENGINEERING COMPANY

PROFESSIONAL STATUS:
1969 - Registered Professional Engineer, State of Maryland

EDUCATION:
1959 - B.S. – Mechanical Engineering – Johns Hopkins University – Baltimore, MD
1952 – Baltimore Polytechnic Institute – Advanced College Preparatory Course

EMPLOYMENT EXPERIENCE:
1983 – Present Environmental Engineering Co. – Principal Engineer
1982 – 1983 Bermuda Air Conditioning Ltd. – Project Engineer/Project Manager
1973 – 1982 The Poole and Kent Company – Project Engineer
1959 – 1963 Honeywell Controls Division – Application Engineer
1958 – 1964 Maryland Air National Guard – Sergeant
1955 – 1959 Martin Aerospace Division – Design Draftsman
1954 – 1955 Bendix Radio Division – Draftsman

PROFESSIONAL AFFILIATIONS/TRADE ASSOCIATIONS/CIVIC AFFAIRS:
ASHRAE – American Society of Heating, Refrigerating & Air Conditioning Engineers
 Past President – Baltimore Chapter
ASPE – American Society of Plumbing Engineers
 Certified in Plumbing Engineering (CIPE)
 Charter Member, Past President – Baltimore Chapter
 Member ASPE Legislative Advisory Committee
 ASPE Liaison to the National Standard Plumbing Code
 Member Baltimore County Plumbing Code Committee
ASSE – American Society of Sanitary Engineering
 Working Group on Medical Gas Qualification Standards
ASTM – American Society of Testing & Materials
BOCA – Building Officials & Code Administrators International

IAPMO – International Association of Plumbing & Mechanical Officials
Member Plumbing Code Change Committee

NFPA – National Fire Protection Association
MCAA Representative on NFPA 99 Medical Gas Piping Committee

PROFESSIONAL AFFILIATIONS/TRADE ASSOCIATIONS/CIVIC AFFAIRS:
(Continued)

NSPC – National Standard Plumbing Code Committee
ASPE Liaison, Member Plumbing Code Committee
1997 – 2000 – Chairman of NSPC Committee

NSPE – National Society of Professional Engineers
EDWARD SALTZBERG
CURRICULUM VITAE

NAME: Edward Wolfe Saltzberg
PHONE: (323) 873-4752
(818) 994-2613

OFFICE: 14733 Oxnard Street
Van Nuys, CA 91411-3122
FAX NO.: (818) 782-7792

E-MAIL: ed@esaltzberg.com

ACTIVE TITLES AND LICENSES:

Registered Mechanical Engineer (ME)

<table>
<thead>
<tr>
<th>STATE</th>
<th>DATE OBTAINED</th>
<th>LICENSE NUMBER</th>
<th>STATE</th>
<th>DATE OBTAINED</th>
<th>LICENSE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>09/17/71</td>
<td>8105</td>
<td>Massachusetts</td>
<td>09/30/75</td>
<td>28037-HV</td>
</tr>
<tr>
<td>California</td>
<td>07/19/62</td>
<td>12692</td>
<td>Nevada</td>
<td>06/11/71</td>
<td>3174</td>
</tr>
<tr>
<td>Colorado</td>
<td>03/21/70</td>
<td>9837-6</td>
<td>New Jersey</td>
<td>06/21/73</td>
<td>20540</td>
</tr>
<tr>
<td>Florida</td>
<td>03/21/75</td>
<td>0021837</td>
<td>New Mexico</td>
<td>09/29/75</td>
<td>5997</td>
</tr>
<tr>
<td>Georgia</td>
<td>02/15/74</td>
<td>9653</td>
<td>Ohio</td>
<td>04/28/75</td>
<td>E-39873</td>
</tr>
<tr>
<td>Illinois</td>
<td>08/01/73</td>
<td>62-31295</td>
<td>Oklahoma</td>
<td>01/20/75</td>
<td>9901</td>
</tr>
<tr>
<td>Indiana</td>
<td>01/29/75</td>
<td>15837</td>
<td>Pennsylvania</td>
<td>04/08/75</td>
<td>22037-E</td>
</tr>
</tbody>
</table>

Other Titles and Licenses:

Certified Energy Manager (CEM) 1983
Fire Protection Engineer (#FP-559) -
CA 1977

Certified in Plumbing Engineering
(CIPE) 1983
P.I.P.E. Journeyman Plumber 1985

L.A. City Journeyman Plumber 1958

INACTIVE MECHANICAL ENGINEERING LICENSES:

<table>
<thead>
<tr>
<th>STATE</th>
<th>DATE OBTAINED</th>
<th>LICENSE NUMBER</th>
<th>STATE</th>
<th>DATE OBTAINED</th>
<th>LICENSE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>07/25/75</td>
<td>9766</td>
<td>Tennessee</td>
<td>04/07/75</td>
<td>010266</td>
</tr>
<tr>
<td>Iowa</td>
<td>02/28/75</td>
<td>7570</td>
<td>Texas</td>
<td>10/03/73</td>
<td>35738</td>
</tr>
<tr>
<td>Kansas</td>
<td>01/16/75</td>
<td>6987</td>
<td>Washington</td>
<td>02/31/75</td>
<td>15145</td>
</tr>
<tr>
<td>Michigan</td>
<td>02/27/75</td>
<td>22281</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELDS OF EXPERTISE:
Plumbing, process piping, storm drainage, irrigation, heating, ventilation,
air conditioning, fire protection, energy conservation and plumbing and HVAC product
design.

PRIMARY OCCUPATION: Consulting Mechanical Engineer.

EDUCATION: AA Degree (1953) Los Angeles City College.
BS Degree (1956) California State College, Los Angeles; Plumbing Engineering
(a specialized construction mechanical engineering curriculum).
EMPLOYMENT HISTORY:

<table>
<thead>
<tr>
<th>Dates</th>
<th>Company</th>
<th>Position/Responsibility/Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/61 to 11/67</td>
<td>Michael C. Maroko, Consulting Mechanical Engineers</td>
<td>Associate Engineer. Responsible for operation and organization of office, client coordination and design of mechanical systems and specifications; designed many hospitals, high-rise offices, commercial, residential, and industrial projects throughout the United States.</td>
</tr>
<tr>
<td>11/58 to 11/61</td>
<td>Welton Becket & Associates, Architects & Engineers</td>
<td>Project Engineer & Assistant Department Head. Complete responsibility for plumbing design of major projects. Responsible for coordination of systems and specifications; designed multi-million dollar projects; selected type of system, equipment and materials; organized and supervised plumbing department staff.</td>
</tr>
<tr>
<td>2/55 to 11/58</td>
<td>Gilbert J. Comeau, Consulting Mechanical Engineers</td>
<td>Project Engineer. Complete responsibility for design and specifications of plumbing, piping, heating, air conditioning, and fire protection systems for all types of projects such as shopping centers, high-rise projects, apartment buildings, commercial and industrial buildings. Included design calculations, selection of materials & equipment, cost estimates and site observation.</td>
</tr>
<tr>
<td>8/53 to 2/55 (Part time)</td>
<td>Los Angeles Dept. of Water & Power</td>
<td>Electrical/Mechanical Draftsman. Converted engineers' sketches into working drawings; worked on power plants, substations, transformer building facilities; completed drawings reviewed by Checking Department.</td>
</tr>
<tr>
<td>2/53 to 5/53 (Part time)</td>
<td>Febco, Inc. Manufacturing & Engineering Co.</td>
<td>Draftsman/Designer. Designed lawn sprinkler systems and backflow preventer components; drew assembly and fabrication drawings; did research for comprehensive treatise on backflow prevention; designed irrigation systems for many large projects such as golf courses, schools, etc.</td>
</tr>
<tr>
<td>6/43 to 2/53 (Part time)</td>
<td>Seabreeze Engineering Company Mfr. & Plumbing Contractor</td>
<td>Designed and installed plumbing systems for residential and small commercial buildings; designed components for fans and barbecues; selected materials, fabrication and finishing methods for parts.</td>
</tr>
</tbody>
</table>

I grew up in construction, worked at most construction trades, but worked in my youth primarily as a Journeyman Plumber (apprenticeship served in Plumbers' Union Local 78).

PROFESSIONAL MEMBERSHIPS: Classification and Position Held

Association for Facilities Engineering (AFE) (formerly American Institute of Plant Engineers (AIPE). Full Member (joined 1974).
American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Full Member (joined 1970).
American Society of Plumbing Engineers (ASPE). Charter Member and Co-founder. Past President of Los Angeles Chapter and National Society; Chairman, National Education Committee; Chairman, ASPE-ASHRAE Liaison; Vice President, Legislative, L.A. Chapter. Member
Society Chapter Operations Committee and Structure and Governance Committee; and Legislative Committee (Started 1964).
California Society of Professional Engineers (CSPE). Member (joined 1984).
International Association of Plumbing & Mechanical Officials (IAPMO). Secretary of So. Calif. Chapter for 37 years; member or past member of Education, Plumbing Code, Spa & Pool Code, & Solar Code; Standards; Research & numerous ad hoc committees. (joined 1958).
Los Angeles County Board of Examiners of Plumbers & Gas Fitters (since 3/92).
Mechanical Engineers Association of California (MEAC). Past President and Secretary and currently Board Member. (Joined 1971).
National Academy of Forensic Engineers (NAFE). Fellow (joined 1984).
National Society of Professional Engineers (NSPE). Member (joined 1984).
Society of Fire Protection Engineers (SFPE). Affiliate Member (joined 1977).
Unified Plumbing & Piping Association of Long Beach. Honorary Member (since 1977).

MEMBERSHIPS

SOCIAL, RELIGIOUS, PHILANTHROPIC:

Brandeis-Bardin Institute – Member, House of the Book; Member, Board of Directors; Member, Executive Committee; and Chairman, Building and Grounds Committee.
Jewish Federation Council, San Fernando Valley Region – Past Member - Community Relations Committee, Past Member Board of Directors, Valley Business & Professions Committee, Real Estate & Construction Division, and United Jewish Fund. Also Past Chairman, Bernard Milken Jewish Community Campus Facilities Committee.
Stephen S. Wise Temple – Temple member.
Jewish Community Centers Association - Los Angeles – Past Member, Building Committee.
The Executives – Support Group for the Jewish Home For the Aging – Member, Board of Directors and Program/Public Affairs Committee.

AWARDS AND HONORS:

ASPE, National Society – Certificate of Appreciation (October 1998)
ASPE Research Foundation – Certification of Appreciation (October 1998)
ASPE, Los Angeles Chapter - Certificate of Merit - Legislative Committee (July 1996).
ASPE, Los Angeles Chapter - Certificate of Appreciation (June 1996).
IAPMO, Southern California Chapter - Plaque for Dedicated Service (April 1995).
PHCC of Greater Los Angeles - Certificate of Appreciation (June 1994).
ASPE, National Society - Numerous Certificates of Appreciation.
ASPE, Los Angeles Chapter - Numerous Certificates of Appreciation.
ASPE, Los Angeles Chapter - Engineer-of-the-Year Award (1988).
IAPMO, Southern California Chapter - 25 year Special Service Award (1985).
Los Angeles City College - Familian Scholarship (1954).
Los Angeles City Plumbing and Los Angeles Unified School Board - Numerous Oral Interview Boards.
Who’s Who in the West - 21st through 23rd Edition.

BOOKS, ARTICLES, PAPERS PUBLISHED:

Plumbing Engineer Magazine – "Are Ultra Low Flow Shower Heads Suitable for all Existing Applications?" (September 1998)
Plumbing Engineer Magazine - "Prompt Delivery of Hot Water at Fixtures" (September 1997).
NAFE Journal - "The Danger of Unsubstantiated Assumptions: Indoor Air Quality" (June 1997).
Plumbing Engineer Magazine - "Electronic Data Acquisition Improves Hot Water Analysis" (September 1996).
NAFE Journal - "New Approaches for Analyzing Hot Water and Other Systems" (June 1996).

BOOKS, ARTICLES, PAPERS PUBLISHED: (Continued)

Plumbing Engineer Magazine - Letter to the Editor on Plumbing Codes (November/December 1995).
PM Engineer Magazine - Point/Counterpoint - "Will Air Admittance Valves Do The Job?" (February/March 1995).
Plumbing Engineer Magazine - "To Combine or Not to Combine: Combined Hydronic Systems and Their Pitfalls" (September 1993).
Plumbing Engineer Magazine, Guest Forum - Research article (December 1991).
IAPMO, Southern California Chapter - Monthly Meeting Minutes (March 1960 through present).
IAPMO - "Review of Plumbing Portion of the CABO One and Two Family Dwelling Code and Referenced Documents" (September 1990).
Plumbing Engineer Magazine, Guest Forum - "Who's Watching the Chicken Coop?" (March 1990).
ASPE, 1990 Convention Technical Proceedings - "Quality & Ethics in the Construction Industry".
NAFE Journal - "Forensic Plumbing Engineer" (October 1989).
ASPE, 1988 Convention Technical Proceedings - "Plumbing Engineer as a Forensic Engineer".
Indoor Comfort News - "Contractor Pitfalls" (May 1987).
Reeves Journal Magazine - "History of ASPE" (February 1987).
Plumbing Engineer Magazine - "Engineers and Contractors Can Effect Change in Plumbing Codes"
(May 1986) and "Domestic Engineering" (May 1986).

Plumbing Engineer Magazine - "Plumbing Codes - ASPE's Role?" (January 1984).

Plumbing Engineer Magazine - "The Role of ASPE With Regard to Codes" (June 1980).

Contractor Magazine - "Who is Best Able to Provide Competent Design Capability?" (March 1975).

Plumbing Engineer Magazine - "The Value of Engineering" (September 1975).

Western Building Design - "A Mechanical Engineer Can Save You and Your Client Money" (February 1973).

ASPE Data Book - "Cold and Hot Water Pipe Sizing" (Chapter 7) (1971 Edition to present).

Official (IAPMO Magazine) - "Role of the Plumbing Engineer in Modern Construction" (March 1971).

Official (IAPMO Magazine) - "Water Pipe Sizing" (October 1967).

LECTURE AND TEACHING EXPERIENCE:

ASPE, Los Angeles Chapter – "Hot Water and How to Get Out Of It" (January 1999)

Plumbing Inspectors Association of Michigan, Traverse City, MI – "IPC/UPC Engineering Cost Comparison Seminar" (October 1998)

Construction Law Breakfast Group, Pomona, CA – "Recurring Plumbing Defects" (June 1998)

IAPMO, Orange Empire Chapter - "Recurring Plumbing Defects", Part 1 and 2 (May and June 1997).

LECTURE AND TEACHING EXPERIENCE: (Continued)

AFE, San Fernando Valley Chapter - "Forensic Engineer's Advice to Plant Engineers" (April 1997).

IAPMO, Southern California Chapter - "Recurring Plumbing Installation Problems", Part 1 and 2 (March and April 1997).

NAFE, Winter Meeting, Charlotte, NC - "Don't Assume - It Can Cost Your Client Considerable - An Approach to Solving Indoor Air Quality Cases" (January 1997).

AFE Western Region Convention, Anaheim, CA - "New Simplified Approaches for Trying to Keep Building Occupants Happy," (April 1996).

UPPA of Long Beach - "Recurring Plumbing Defects" (June and July, 1995).

PHCC-GLAA - Panel Discussion , "What Would You Like to Know?" (June 1995).

Raypak Technical Sales Staff - Hydronic Presentation (August 1993).

ASPE, Los Angeles Chapter - "To Combine or Not to Combine - An In-Depth Review of Standard and Combined Hydronic Heating Systems and Their Various Pitfalls" (April 1993).

ASPE, Los Angeles Chapter - "Failures of Copper Piping" (March 1993).

MEAC - Uniform Plumbing Code Update (February 1993).

City of Los Angeles - Forensic Engineering Presentation (October 1992).

ASPE, Los Angeles Chapter - Code Presentation (July 1991).
ASPE, Los Angeles Chapter - "Are You Qualified to be a Forensic Engineer and the Hidden Pitfalls of This Endeavor" (August 1991).

ASPE, Los Angeles Chapter - "Plumbing Code Interpretations" (July 1991).

IAPMO, Southern California Chapter - "The CABO Residential Plumbing Code" (June 1990).

IAPMO, Southern California Chapter - "Sovent" (January 1990).

Los Angeles City, Low Flow Water Closets (June 1989).

National Academy of Forensic Engineers Conference (NAFE), Atlanta, Georgia - "Forensic Plumbing Engineer" (January 1989).

Plumbing Piping Industry Council, Los Angeles Chapter - "Engineer/Contractor Relations" (November 1988).

Unified Plumbing & Piping Association of Long Beach (UPPA) - Monthly meeting - "ASPE and the Contractor" (November 1988).

American Society of Plumbing Engineers International Convention, Long Beach, California - "The Plumbing Engineer as a Forensic Engineer" (November 1988).

Association of Energy Engineers (AEE), Los Angeles Chapter Seminar - HVAC Problems (October 1987).

LECTURE AND TEACHING EXPERIENCE:

American Society of Plumbing Engineers (ASPE), Los Angeles Chapter - "The Unseen Codes" Seminar (July 1987).

Los Angeles Unified School District, Training Program - "Water Pipe Sizing" (May 1987).

Plumbing Piping Industry Council - Los Angeles, CA (PPIC) - "ASPE & the Contractor" (March 1987).

IAPMO, Southern California Chapter - "Water Pipe Sizing" (May and June 1986).

Plumbing Engineer Magazine, Chicago, IL - Construction Round Table Forum (November 1984).

American Society of Plumbing Engineers Convention, Chicago, IL - Code Seminar (November 1984).

Plumbing Heating Cooling Contractors Conference (PHCC), Long Beach, CA - "Water Pipe Sizing" (May 1984).

American Society of Plumbing Engineers, Los Angeles Chapter - One-day Water Pipe Sizing Engineering Seminar (February 1983).

IAPMO Conference, Honolulu, Hawaii - Water Pipe Sizing Seminar (October 1982).

Reseda High School, Reseda, CA - "Energy Conservation in Restaurants" (June 1982).

Mechanical Engineers Association of California (MEAC), Los Angeles, CA - HVAC Educational Seminar (April 1980).

Los Angeles School Board - Hearing on Curtailment of Drafting Classes (April 1980).

Unified Plumbing & Piping Association of Long Beach (UPPA) - Monthly meeting (June 1977).

Women in Construction (WICS), Los Angeles, CA - Construction class (May 1977).

University of Wisconsin - Engineering Symposium (December 1970).

Plumbing Heating Cooling Contractors of Los Angeles (PHCC-LA) - Monthly meeting (April 1968).

IAPMO Annual Conference, San Francisco, CA - Education Seminar (September 1967).

IAPMO, Southern California Chapter - Numerous presentations at monthly meetings.

ASPE, Los Angeles Chapter - Panels and seminars (numerous dates).

Jewish Marriage Encounter - National and regional conventions (numerous dates).

Jewish group lectures (various dates).