
Presented to the IAPMO Standards Review Committee on September 15, 2020

General: The changes to this standard should not have an impact on currently listed products. The significant change is:
- Clarified requirements for bowl refill tube and added a note for closet tanks with integrated antisiphon fill valve to comply with ASME A112.19.2/CSA B45.1 (see Section 3.3)

Section 2, Reference publications and definitions:

ASME (American Society of Mechanical Engineers)/CSA Group

- ASME A112.18.1-2012/2018/CSA B125.1-1218
 Plumbing supply fittings
- ASME A112.19.2-2013/2018/CSA B45.1-1318
 Ceramic plumbing fixtures

ASME (American Society of Mechanical Engineers)

 Unified Inch Screw Threads, (UN and UNR Thread Form)

ASSE International

ASSE Plumbing Dictionary, Sixth Edition, 20092007

Section 3, Design and general requirements: Clarified requirements for bowl refill tube and added a note for closet tanks with integrated antisiphon fill valve as follows:

3.3 Bowl refill tube

3.3.1 Installed position
The bowl refill tube, when supplied, shall be sufficiently rigid to maintain its installed position.

3.3.2 Retrofit devices only

If a clip or other The means is used to secure of securing the bowl refill tube to the overflow tube, it shall not obstruct a cross-sectional area of the tank overflow tube by more than 20 mm² (0.031 in²). Note: When a water closet tank is equipped with an anti-siphon fill valve as original equipment, the required overflow performance is determined in accordance with ASME A112.19.2/CSA B45.1.
Section 4.6.2.3, Procedure to determine the critical level location for a device without a CL mark:
Clarified testing procedure as follows:

4.6.2.3.2 Procedure to determine the critical level location
The critical level location shall be determined as follows:

a) Lower the water level in the tank to 3.00 ± 0.25 mm (0.12 ± 0.01 in) below the
 i) atmospheric vent(s), in the case of fill valves with vacuum-breakers; or
 ii) water discharge opening, in the case of fill valves with air-gaps.

b) Apply a vacuum of 85 ± 4 kPa (25.0 ± 1 inHg) to the specimen while the water level in the tank is
 gradually lowered at a rate of ≤ 5 mm/30 s (0.2 in/30 s).

c) Mark Record the elevation at which backsiphonage ceases (BB in Figure 3).

d) Lower the water level to 25 ± 0 – 2.5 mm (1 ± 0 – 0.1 in) below mark BB.

e) Apply a vacuum of 85 ± 4 kPa (25.0 ± 1 inHg) to the specimen as the water level in the test tank is
 gradually raised at a rate of ≤ 5 mm/30 s (0.2 in/30 s).

f) Mark Record the elevation at which backsiphonage begins (AA in Figure 3).

g) Determine the lower elevation (AA or BB) as the critical level.

h) If water fails to appear in the sight glass, the device shall be installed as shown in Figure 2 and tested
 according to the procedure specified in Clause 4.6.2.2.2 and retested to meet the requirements of
 Clause 4.6.2.3.

Figure 2, Anti-siphon fill valve test assembly: Footnote was added as follows:

Note: This Figure denotes the relative positions of the components in the set-up.