

Achieving Secondary Wastewater Treatment Standards using Zero-Energy Combined Treatment and Dispersal Technology David Lentz, P.E.

Content Limitation

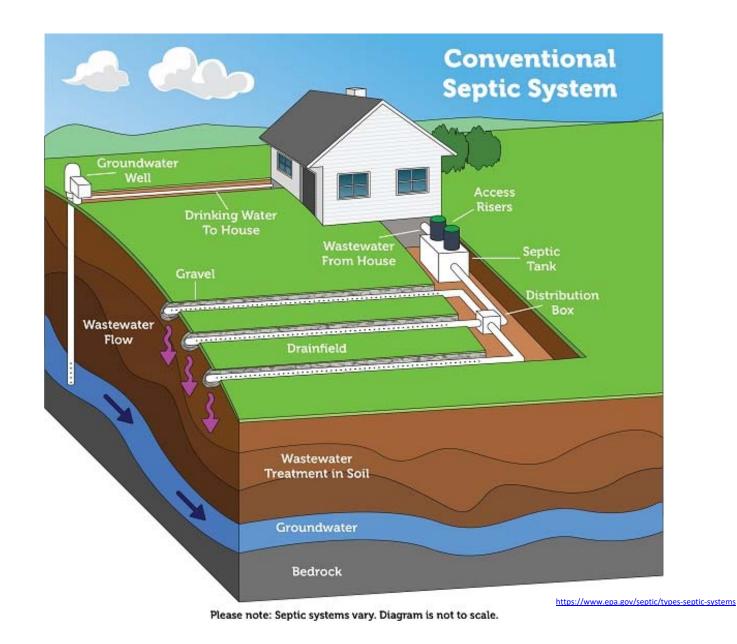
There are many combined treatment and dispersal systems approved by regulatory agencies. These products are produced by multiple manufacturers. Since showing all designs and performance results is not practical, this presentation depicts designs from one manufacturer.

The audience can search for "combined treatment and dispersal systems" to find additional information on the topic and information on other products within the technology group.

Onsite wastewater systems are used in 30 million U.S. homes – serving 25% of the population

"...4 billion gallons of sewage is treated by onsite/ decentralized systems in the **USA** every day."

USEPA


One-third of new homes built in the U.S. use onsite wastewater treatment systems

Conventional Septic System

United States Environmental Protection Agency

€EPA

Conventional Drainfield Distributes Wastewater

What if Wastewater Treatment is Needed?

Electromechanical systems treat wastewater to secondary standards requiring:

- Electricity
- Maintenance
- Blower
- Separate drainfield

https://www.yolocounty.org/government/general-government-departments/community-services/environmental health-division/land-use-programs/onsite-wastewater-treatment-system-program/types-of-owts-septic-systems

Separate Treatment and Dispersal Systems

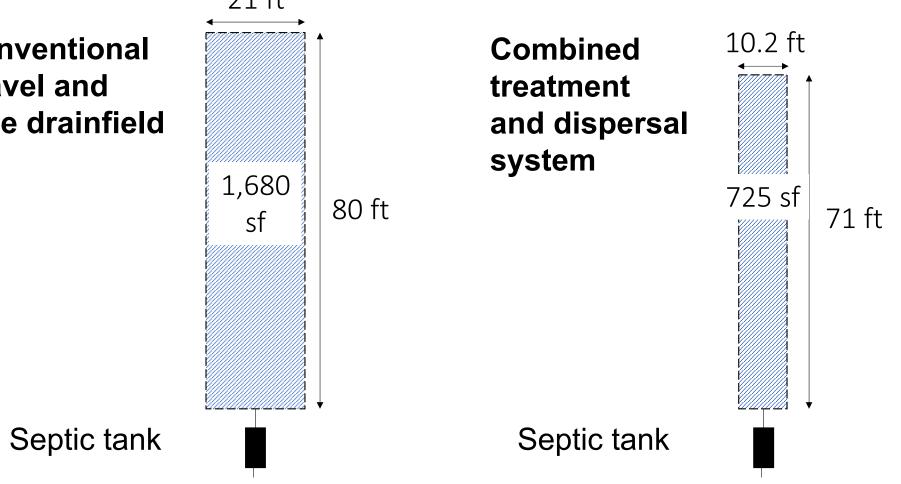
https://www.yolocounty.org/government/general-government-departments/community-services/environmental-health-division/land-use-programs/onsite-wastewater-treatment-system-program/types-of-owts-septic-systems

http://www.newhudsonvalley.com/category/building-a-passive-house/passive-house-site-development/septic-system

Combined Treatment and Dispersal System

Why Combined Treatment and Dispersal?

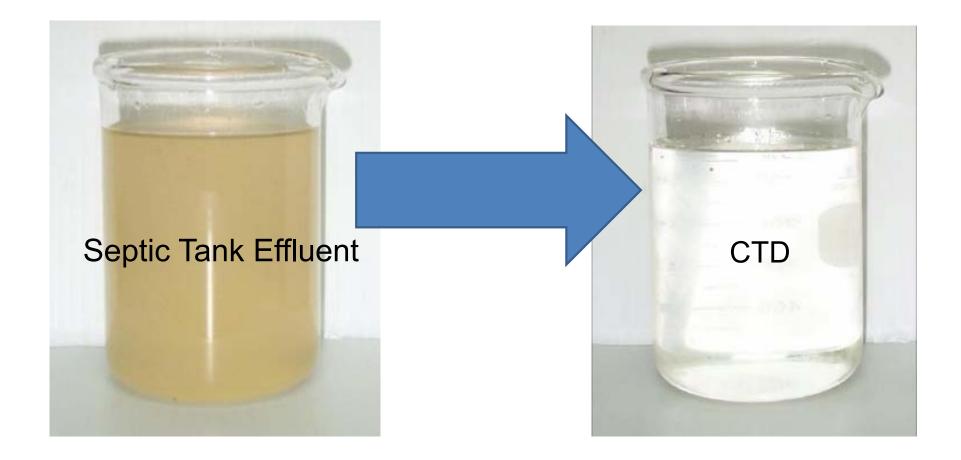
- Two functions in one footprint
- Zero-electric passive operation
- Resilient naturally occurring microbes
- Stable, reliable performance
- High wastewater purification levels
- Design versatility for nutrient removal
- No moving parts or special maintenance
- Smaller footprint vs. legacy systems


No Special Maintenance

- Pump septic tank as needed
- If installed, clean effluent filter
- If installed, check observation ports
- Maintain vegetated system cover

Smaller Footprint vs. Legacy Systems

Conventional gravel and pipe drainfield

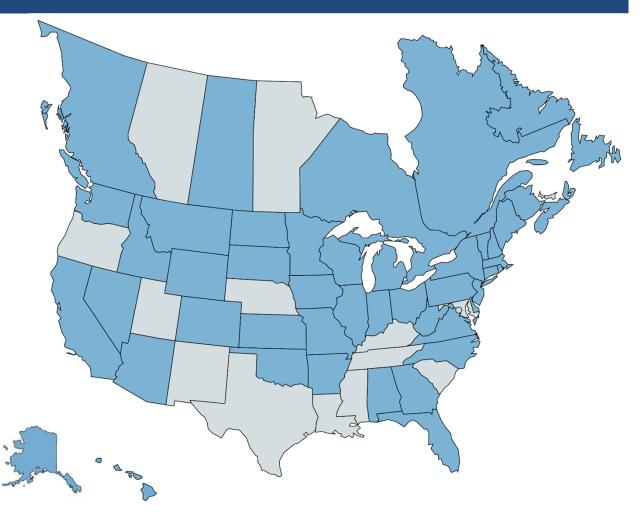


21 ft

CTD Provides Another Tool in the Toolbox

Zero-Energy Secondary Treatment

Why is CTD an Emerging Technology?

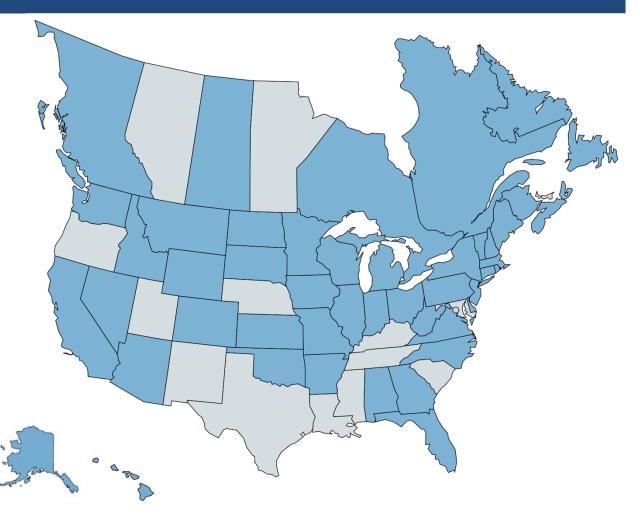

- Increasing wastewater reclamation needs
- Increasing treatment system demand
- National performance standard certification availability
- Increasing energy conservation awareness
- Improved design and manufacturing methods
- Broadening regulatory recognition

Evolving North American Regulatory Acceptance

Key

Accepted jurisdiction

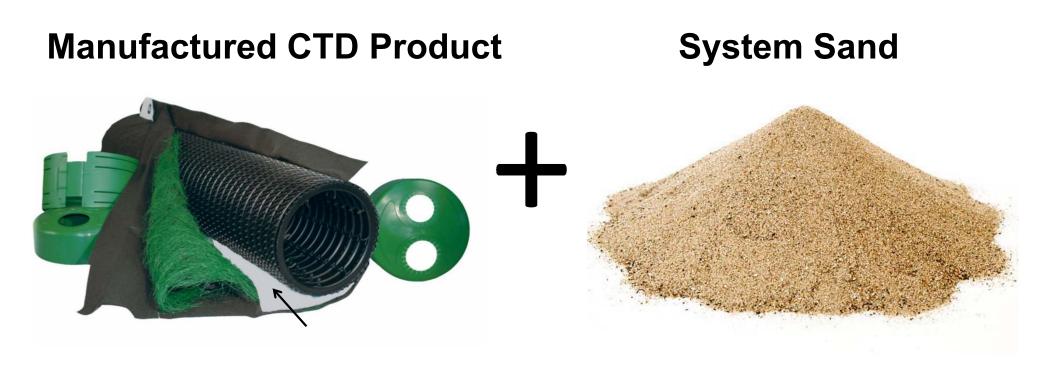
No regulatory approval

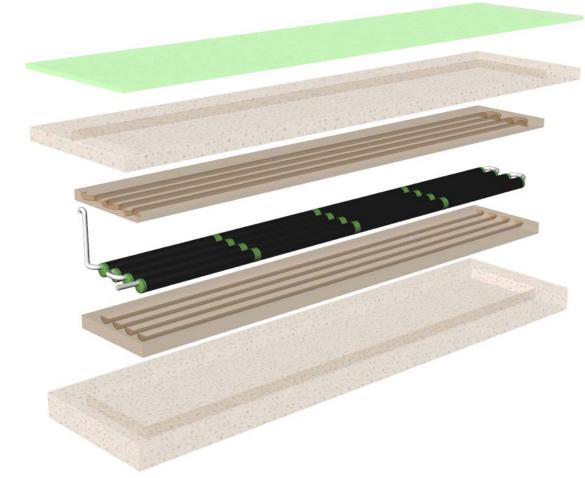

Evolving North American Regulatory Acceptance

Key

Accepted jurisdiction

No regulatory approval


Number of individual installations exceeds 500,000


What's inside a field-installed combined treatment and dispersal system?

Integrated Technology

https://www.istockphoto.com/photos/sand-pile

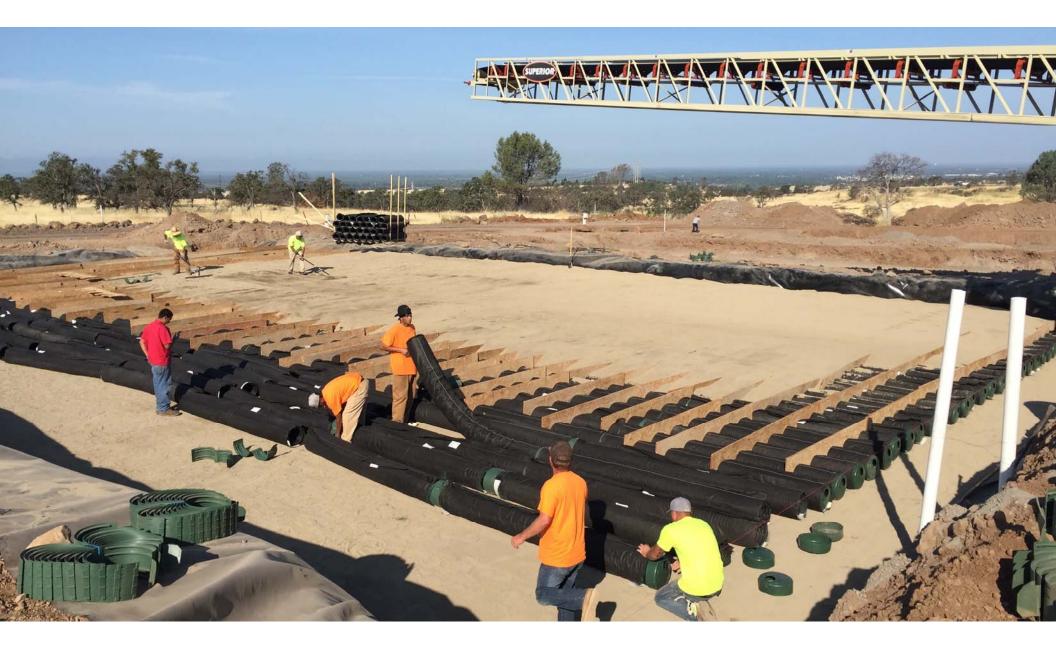
Typical Expanded View

Vegetative cover Backfill soil 3-in system sand

Manufactured product

6-in system sand

Native soil



California 100,000 gpd Installation

- FEMA worker base camp
- Over 1,500 workers
- Kitchens and laundry facilities
- Largest CTD system to date
- 100,000 gallons per day
- Adapted for nutrient reduction

Typical Residential Installation

Compact Residential Installation

What is Secondary Treatment?

United States Environmental Protection Agency

EPA establishes secondary treatment standards for publicly owned treatment works (POTWs), which are minimum, technologybased requirements for municipal wastewater treatment plants. These standards are reflected in terms of five-day biochemical oxygen demand (BOD5), total suspended solids (TSS) removal, and pH.

NSF/ANSI 40 Secondary Treatment Standards

ANSI

NSF/ANSI 40 Parameter	Requirement	NSF international Standard / American National Standard
5-day carbonaceous oxygen demand	<25 mg/l	NSF/ANSI 40 - 2020 Residential Wastewater Treatment Systems
Total suspended solids	<30 mg/l	
рН	6 to 9	

NSF/ANSI 40 Certification

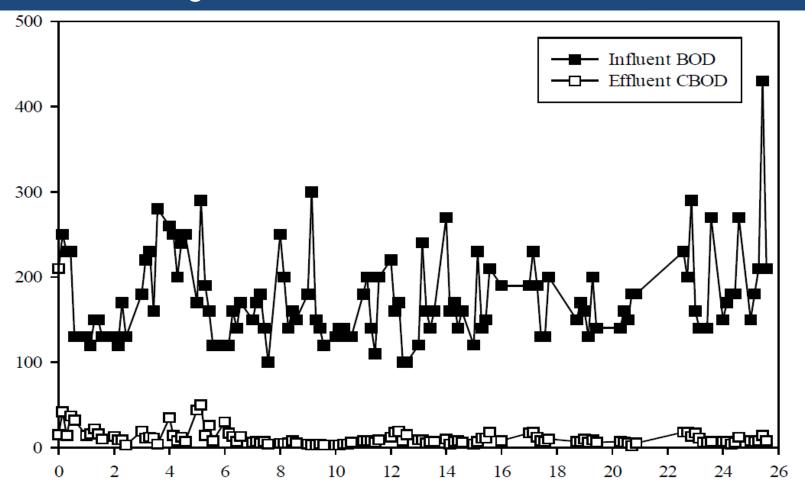
NSF/ANSI 40 Testing

- Consistently reduced CBOD₅ and TSS concentrations:
 - From day 1
 - Throughout 26-week test

	WASTEWATER TECHNOLOGY Market Auder Market Market Market Market Market Market MSE	TABLE I. SUMM	IARY OF A	ANALYTICA	3	Interquartile	
	Ne lemma i in the financial (2) Alt (2) Manakina Malaya Alt (2) Alt (2) Manakina Malaya Alt (2) Alt (2)	Average	Std. Dev.	Minimum	<u>Maximum</u>	Median	Range
Biocher	nical Oxygen De	mand (mg/L)					
Influe	ent (BOD ₅)	180	52	100	430	160	140 - 200
Efflu	ent (CBOD5)	11	9	2	50	8	6-14
Total Su Influe Efflue		(mg/L) 210 7	71 3	45 2	650 18	190 6	170- 230 5 -9
pН							
Influe	ent	-	21	6.0	7.5	6.9	6.8 - 7.2
Efflu	ent	-		6.0	7.4	6.5	6.3 - 6.7
	ature (°C)						
Influe	ent	17	5	8	23	19	13 – 21
Efflu	ent	16	7	2	32	18	10 - 23
Dissolve	ed Oxygen (mg/L	_)					
Influe	ent	0.4	0.4	0.1	2.5	0.2	0.1 – 0.5
Efflu	ent	3.5	1.7	1.0	8.5	3.4	2.0 - 4.4

WASTEWATER TECHNOLOGY Market Andread Research Technology Market Andread Research Techn	TABLE I. SUMN <u>Average</u>		ANALYTICA <u>.</u> <u>Minimum</u>	AL RESULTS <u>Maximum</u>	Median	Interquartile <u>Range</u>
Biochemical Oxygen Den						
Influent (BOD ₅)	180	52	100	430	160	140 - 200
Effluent (CBOD ₅)	11	9	2	50	8	6-14
Total Suspended Solids (Influent Effluent pH	(mg/L) 210 7	71 3	45 2	650 18	190 6	170- 230 5 -9
Influent	_		6.0	7.5	6.9	6.8 – 7.2
Effluent	0		6.0	7.4	6.5	6.3 – 6.7
Temperature (°C) Influent Effluent	17 16	5 7	8 2	23 32	19 18	13 – 21 10 - 23
Dissolved Oxygen (mg/L) Influent Effluent) 0.4 3.5	0.4 1.7	0.1 1.0	2.5 8.5	0.2 3.4	0.1 – 0.5 2.0 –4.4

	BLE I. SUMN		NALYTICA	L RESULTS	5		
And the second s	Average	Std. Dev.		<u>Maximum</u>	Median	Interquartile <u>Range</u>	
Biochemical Oxygen Demand	(mg/L)						
Influent (BOD ₅)	180	52	100	430	160	140 - 200	
Effluent (CBOD ₅)	11	9	2	50	8	6-14	
Total Suspended Solids (mg/L	.)						
Influent	210	71	45	650	190	170-230	
Effluent	7	3	2	18	6	5 -9	
рН							
Influent	-		6.0	7.5	6.9	6.8 - 7.2	
Effluent	U	21	6.0	7.4	6.5	6.3 - 6.7	
Temperature (°C)							
Influent	17	5	8	23	19	13 – 21	
Effluent	16	7	2	32	18	10 - 23	
Dissolved Oxygen (mg/L)							
Influent	0.4	0.4	0.1	2.5	0.2	0.1 - 0.5	
Effluent	3.5	1.7	1.0	8.5	3.4	2.0 - 4.4	

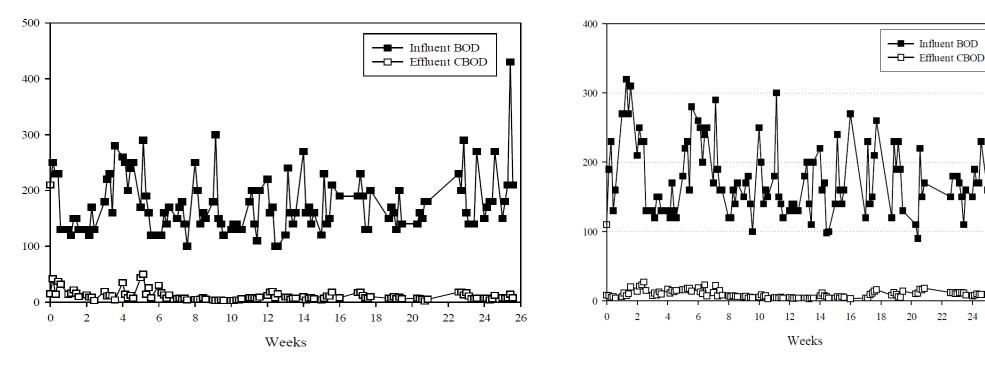

WASTEWATER TECHNOLOGY Water Industry Industry Party Water Industry Industry Industry Name Water Industry Industry	TABLE I. SUMMARY OF ANALYTICAL RESULTS								
E CARLER STREET	Average	<u>Std. Dev.</u> <u>Minimum</u>		<u>Maximum</u>	<u>Median</u>	Interquartile <u>Range</u>			
Biochemical Oxygen Demand (mg/L)									
Influent (BOD ₅)	180	52	100	430	160	140 - 200			
Effluent (CBOD ₅)	11	9	2	50	8	6-14			
Total Suspended Sol	ids (mg/L)								
Influent	210	71	45	650	190	170-230			
Effluent	7	3	2	18	6	5 -9			
рН									
Influent	-	21	6.0	7.5	6.9	6.8 - 7.2			
Effluent	<u>_</u>	21	6.0	7.4	6.5	6.3 - 6.7			
Temperature (°C)									
Influent	17	5	8	23	19	13 – 21			
Effluent	16	7	2	32	18	10 - 23			
Dissolved Oxygen (m	ıg/L)								
Influent	0.4	0.4	0.1	2.5	0.2	0.1 - 0.5			
Effluent	3.5	1.7	1.0	8.5	3.4	2.0 - 4.4			

NSF/ANSI 40 Testing

- Fluctuating influent concentrations
- Consistent effluent concentrations

CBOD₅ Treatment Performance

CBOD5 Treatment Comparison


Product A

Product B

┉╔╖╓╌╔╚

24

26

NSF/ANSI 40 Testing

- No start-up period required
- Effectiveness is immediate

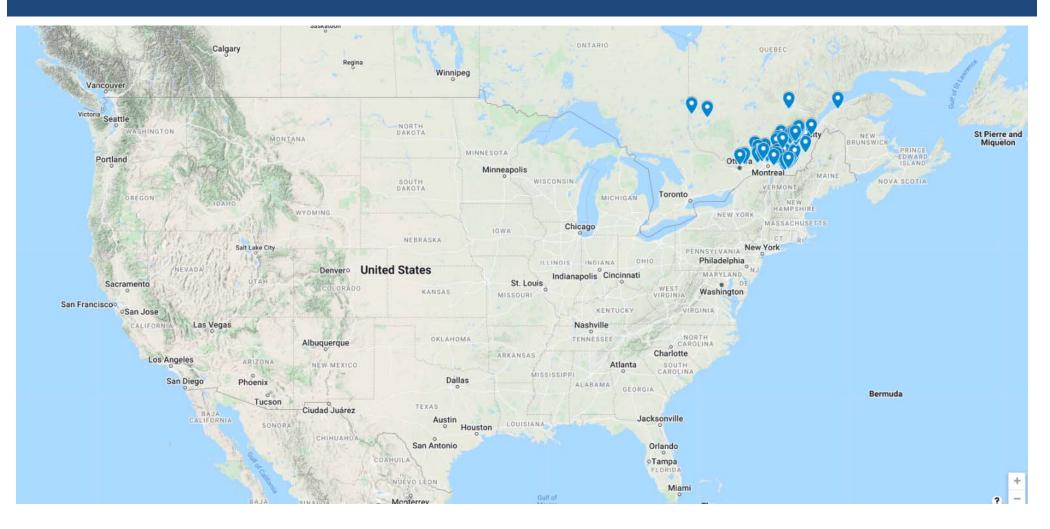
NSFIANSI SI	andard 40 - Residen	stal Wastewater Treatment Syste
Presty Enviro Bingle Septie 13/08/066/003		SF
	20	Tammational Dathern Road Box 150140 Channe 40113-4040 UKA

Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
4	1	28			
	2	16	17	100	
1	3	8	17	180	
	4	11			
	5	15			
	6	28			
2	7	16	14	170	
	8	6			
	9	6			
	10	3			
3	11	4	7	160	
5	12	8	1	100	
	13	14			
	14	7		170	
4	15	7	9		
4	16	7	9		
	17	12			
	18	14		160	
	19	8			
5	20	8	8		
	21	6			
	22	4			
	23	16			
6	24	9	10	200	
0	25	7	10		
	26	9			

Table II. 7- and 30-day Average Effluent $CBOD_5$ and 30-day Average Influent BOD_5

Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
	1	28			
4	2	16	47	180	
1	3	8	17		
	4	11			
	5	15			
	6	28		170	
2	7	16	14		
	8	6			
	9	6			
	10	3		160	
2	11	4	7		
3	12	8			
	13	14			
	14	7			
4	15	7	0	170	
4	16	7	9		

Table II. 7- and 30-day Average Effluent CBOD₅ and 30-day Average Influent BOD₅



Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
	1	28			
1	2	16	- 17	100	
1	3	8	17	180	
	4	11			
	5	15			
	6	28		170	
2	7	16	14		
	8	6			
	9	6			
	10	3			
3	11	4	7	160	
3	12	8] /	160	
	13	14			
	14	7			
4	15	7		470	
4	16	7	9	170	

Table II. 7- and 30-day Average Effluent CBOD₅ and 30-day Average Influent BOD₅

Resilience – Cold Climate Performance in Quebec

Quebec Residential Performance Data

Tableau des résultats BNQ 2018

Référence installation	ville	Date d'installation	MES	DBO5	Coliformes Fécaux	
3863	Lac Beauport	28/11/2011	<1	<3	<10	
5725	Rouyn-Noranda	02/09/2013	<1	<3	<10	
1905	Québec	02/09/2009	<1	<3	<10	
2166	St. Lazare-de-Bellechasse	23/11/2009	2	<3	<10	
2170	Ascot Corner	17/04/2009	3	3	18	
2567	L'Ange-Gardien	15/07/2010	<1	6	700	
4356	Mascouche	20/08/2012	4	<3	5700	
6643	Laval	17/12/2014	3	<3	<10	
2583	Saint-Tite	03/06/2010	2	<3	<10	
2318	Saint-Hippolyte	03/05/2010	12	58	60000	

International Certification Reach

CER

Thank You for Attending!

CTD Technology Summary

- Promotes wastewater reclamation
- Reduces energy demand
- Performs reliably and consistently
- Proven longevity
- Functions in all climates
- Smaller footprint vs. legacy systems

Presented by David Lentz, P.E. dlentz@infiltratorwater.com

www.infiltratorwater.com