Smart Cities and Water Reuse

Sixth International Emerging Technology Symposium

Presenter: Dr. Markus J. Lenger
Sponsored by: CleanBlu Innovations Inc.
Smart Cities

WHAT DOES THAT REALLY MEAN?
WATER! The Key to Successful Smart Cities

- Completely Overlooked in Virtually all Smart City Plans
- Most Smart City Concepts are Heavily Focused on Energy, Communications and Local Agriculture
- Smart Water Reuse is Vital for any Successful Smart City Concept
- Most Technology Exists but Needs Meaningful Implementation
- Communication Between Independent Water Reuse Systems is Proprietary and Inadequate
- Standards are Emerging but Require Expansion
Water Classifications | Definitions

Potable Water

Water suitable for drinking

Non-Potable Water

Water that has not been examined, properly treated, and not approved by authorities as being safe for consumption (on/site/off-site variant)

Greywater (NSF/ANSI 350)

Relatively clean wastewater from baths, sinks, washing machines, and other kitchen appliances

Blackwater

Wastewater containing feces, urine and flush-water from flush toilets along with anal cleansing water

Kitchen Effluent (Dark Grey Water)

As California Bill AB1738 sponsored by Kevin McCarthy
Alternate Water Sources

Rain Water Harvesting

Well established technology - should be implemented everywhere

Greywater

The most underrated Alternate Water Resource

Onsite Treatment

Onsite Wastewater processing for Reuse will be the norm in 10 - 15 years

DEWATS (Decentralized Waste Water Processing)

DEWATS is replacing traditional WWTP plants and eliminating costly sewers
Why DEWATS (Decentralized Wastewater Treatment Systems)?

- 2000 year old Roman technology
- Expensive to Build and Maintain
- Expensive to transport Wastewater
- Inefficient use of Energy
- Large Carbon Footprint
- Public Health Hazard
Indoor Water Use

- Toilets: 24%
- Dishwasher: 2%
- Clothes Washer: 16%
- Leaks: 13%
- Faucets: 20%
- Showers: 20%
- Baths: 3%
- Other: 3%
Regulatory Standards - New Standards Needed

- Few standards existing are inadequate
- Specific standards needed depending on type of water reuse
- Multi competency standards needed
- Combination of electrical, mechanical, plumbing, energy, networking (communications) and architectural guidance to be incorporated into guidelines and ultimately into a set of new standards.
- Encourage willingness to beta test publicly providing adequate telemetry and remote supervision (IoT)
- Standards and codes must be flexible and rapidly adaptable to facilitate the pace of innovation and compensate for new scientific findings.
- International effort with stakeholders across economic spectrum
Networking and Communication Challenge

- IoT (Internet of Things)
- Communications and powering the device
- Long range WiFi
- Short Range Bluetooth, Zigbee, Z-Wave
- Cyber and network security
- Remote monitoring and control coupled with AI to ensure safe operation and compliance
- Powering the sensors
- No Batteries - uncritical and unsustainable - reliability issues
- PoE (Power over Ethernet) or Wireless via Scalar Waves (Dr. Meyl)
Wireless Power using Nicola Tesla Technology

ETS 2018 Smart Cities and Water Reuse Markus Lenger- CleanBlu® May 16, 2018
Technologies and Applications
Alternative Water A New Resource

ReNEWW House
Perdue University
Kitchen Water Reuse

Technology Designed to Reuse Commercial Kitchen Water
• Will process FSE effluent to irrigation water quality
• Potentially reclaiming 20,000 to 40,000 gallons a day
Kitchen Water Reuse FOG-DS Technology

- Designed to reuse Commercial Kitchen water
- Commercial kitchens use large amounts of water
- Problem contaminant is FOG – Fats, Oil and Grease
- CleanBlu is the leader in bioremediation of FOG from commercial FSE’s (Food Service Establishments)
- Discharge water from Grease Interceptors can be further treated and rested in a number of applications including irrigation and Laundry
Vertical Farming

Permaculture Garden Produces 7000 Pounds of Organic Food Per Year on a Tenth of an Acre

Family grows 7000 pounds of organic food per year on a tenth of an acre, supplying 90 percent of their vegetarian diet. They spend less than $2 per day per person on other kitchen staples and make over $20,000 a year selling excess produce.

Fifteen minutes from downtown Los Angeles, just 100 feet away from a major freeway, a small city lot was transformed into a mini paradise.

A fifth acre lot, minus the house, garage and driveway, the family has converted the remaining tenth of an acre into a tiny food forest that produces 7000 pounds of food per year with no synthetic fertilizers.
Aerated Water Feature as Storage and Biological Pre-Treatment
Biological Water Treatment / Bio-filtration

Also Cleans Air and Oxidizes Pollutants
CleanBlu Water Reuse Controller

Designed and Built in San Clemente, CA
Conclusions

• Water treatment and reuse needs to be recognized as a major design block for smart cities
• When designing a smart city, always start with efficiency first!
• Water can be treated to any desired quality for reuse.
• Remote monitoring and control coupled with AI to ensure safe operation and compliance
• A new set of multidisciplinary standards are needed
• Standards depending on type of water reuse
Questions?